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Abstract 
 
 

Perifosine, a novel Akt inhibitor induces apoptosis, cell cycle arrest and has a chemo-

sensitizing effect in medulloblastoma cell lines  

By Anil Kumar, M.B.B.S 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2010 
 

Major Director:  Helen Fillmore, Ph.D 
Department of Neurosurgery, Department of Anatomy and Neurobiology 

 
 

Primary central nervous system (CNS) tumors are the most common solid tumors found 

in children 35.  While surgery and radiotherapy still remain the standard treatment modalities in 

pediatric brain tumors, chemotherapy also has an important part in the management of these 

tumors 87.  However, most of the available chemotherapeutic drugs have suboptimal 

effectiveness.  Deregulation of various pro-apoptotic and anti-apoptotic pathways has been cited 

as a major mechanism underlying this drug resistance.  The role of various serine threonine 

kinases, including Akt kinases, in promoting drug resistance is being extensively studied in 

various cancers.  A complete understanding of the molecular mechanisms that underlie drug 

resistance, and the details regarding the specific drug resistance systems operating in 

medulloblastoma, will help in the development of better therapeutic strategies for these tumors.  

We have characterized the expression of Akt in medulloblastoma clinical samples and cell lines.  

The majority of tumor samples and cell lines were found to have elevated endogenous Akt 
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signaling activity, compared with normal brain samples.  Akt kinase activity is involved in cell 

survival, proliferation and resistance to chemo/radiotherapy in medulloblastoma.  In this study, 

we used a novel drug which has significant activity in suppressing Akt and found that treatment 

with perifosine led to rapid induction of cell death in medulloblastoma cell lines.  Akt inhibitor 

treatment induced apoptosis and cell cycle arrest.  Cell cycle arrest was observed at G1 and G2 

cell cycle checkpoints, accompanied by increased expression of the cell cycle inhibitor 

p21cip1/waf1.  We further investigated the involvement of various proteins regulating apoptosis 

and cell cycle progression in medulloblastoma cells.  We also checked the effect of perifosine on 

regulators of p21waf1/cip1, including Akt, MAPK pathways and p53.  The effect of perifosine on 

the MAPK pathway was found to vary with the medulloblastoma cells line studied: for example 

perifosine treatment increases the activation level of MAPK in VC-312 but had no effect in 

DAOY cells.  On the other hand, perifosine treatment resulted in a decrease in P53 in VC-312 

cells without much effect in DAOY cells.  Further studies are warranted to check the effect of 

perifosine on p21waf1/cip1 regulators.  Additionally, our studies showed that the combination of 

perifosine with etoposide or irradiation had a greater than additive effect in DAOY 

medulloblastoma cells.  These studies support an oncogenic role for Akt in medulloblastoma and 

provide evidence that the Akt inhibition by perifosine, either alone or in combination with other 

chemotherapeutic drugs, might be an effective therapeutic strategy for the treatment of 

medulloblastoma.   
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CHAPTER 1 

  GENERAL INTRODUCTION   

Pediatric Brain tumors and Medulloblastoma 

 

1.1 Pediatric brain tumors and Medulloblastoma 

1.1.1 Pediatric Brain tumors 

Primary central nervous system (CNS) tumors are the second most common neoplasm 

after leukemia and the most common solid malignancy of childhood 7.  The prevalence rate of 

pediatric central nervous system tumors in the United States is estimated at 9.5 per 1000 children 

26.  These tumors are the leading cause of death among children ages 0-19 years.  Primary brain 

tumors include astrocytomas (52% of childhood brain tumors), primitive neuroectodermal 

tumors (PNET) or medulloblastoma (21%), ependymomas (9%), and other gliomas (15%) 7, 35.  

These tumors are thought to arise from two main types of brain cells, neurons and glia.  Glial 

cells include astrocytes, oligodendrocytes, ependymal cells, and microglia.  The majority of 

primary brain tumors appear to arise from glial cells (astrocytoma, oligodendrocytoma, 

ependymoma).  

Despite the fact that brain tumors are common solid malignancies in children, the 

etiology of childhood brain tumors is still largely unknown.  An important question to be 

addressed is: what makes the normal brain cells susceptible to carcinogenesis?  There is evidence 

that the brain is more susceptible to carcinogenesis during prenatal and early postnatal life 7.  

During prenatal life there is extensive brain cell growth and proliferation, which lasts longer than 

in other tissues, thus providing the opportunity for mutagenic changes, leading to tumor 
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development 7.  In addition, some studies have shown a relative deficiency of DNA repair 

enzymes in brain tissue.  Injections of the DNA damaging agent N [3H]-methyl-N-nitrosourea 

(10 mg/kg per week) in rats for five weeks led to the accumulation of the mutagenic DNA adduct 

O6-methylguanine.  The formation of DNA adducts in response to N [3H]-methyl-N-nitrosourea 

was found to be higher in brain tissue than in other tissues examined, including kidney, spleen 

and intestine 85.  Moreover, the brain is more sensitive to toxins from the maternal circulation 

and the environment due to the lack of an efficient blood-CSF barrier during perinatal life 3.  

These factors appear to make the brain more susceptible to malignancy as compared to other 

organ systems during early life. 

1.1.2 Medulloblastoma  

Medulloblastomas, a common malignant childhood tumor, is classified into two main 

histological variants, “classical” and “desmoplastic”.  Other rare variants of medulloblastoma 

include large cell anaplastic, lipomatous, melanocytic and medullomyoblastoma 64, 70, 119.  The 

desmoplastic variant has been reported to occur more frequently in one of the cerebellar 

hemispheres whereas classical medulloblastomas are more frequently located in the vermis of the 

cerebellum.  Histologically, classical medulloblastomas show Homer-Wright rosettes indicating 

neuronal differentiation whereas desmoplastic medulloblastomas are likely to show astrocytic 

differentiation 114, 126.  

Medulloblastomas are generally associated with a worse prognosis than many other 

common pediatric cancers, and are thought to arise from cerebellar neural precursor cells 46.  

Symptoms associated with medulloblastoma depend upon the age of the patient and tumor 

location 81.  Adult patients with brain tumors often present with symptoms such as headache,  
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lethargy, and vomiting due to increased intracranial pressure.  Infants with medulloblastoma may 

present with increasing head circumferences.  As medulloblastomas are located in the infra-

tentorial fossa, they are also known as infra-tentorial primitive neuro-ectodermal tumors 

(iPNETs).  The supra-tentorial PNETs can be differentiated clinically from infra-tentorial 

PNETs, as these patients often present with seizures, endocrinopathies or visual deficits which 

are not commonly seen in iPNETs 81. 

1.2 Treatment of Medulloblastoma  

Therapeutic options for medulloblastomas include surgery, chemotherapy and radiation 

therapy.  These treatment modalities commonly have grave side effects, including memory-, 

attention-, motor function-, language- and visuospatial deficits 107.   

1.2.1 Surgical resection 

  Surgical resection of medulloblastoma is an essential part of treatment that has led to 

improved survival in children with localized disease.  There are sophisticated neurosurgical 

techniques that minimize neurological deficits and improve the survival and quality of life in 

patients with brain tumors 67, 73, 94.  Complete surgical resection is usually performed for 

localized tumors.  However, a subtotal resection is performed if the tumor is invading the 

brainstem.  The strongest prognostic indicator for survival of patients with medulloblastoma is 

the degree of surgical resection of the tumor 143.  Surgical resection may also be associated with 

complications, including ataxia, hemiparesis, sixth cranial nerve palsy and cerebellar mutism 72.  

The cerebellar mutism is characterized by a transient decrease in speech output.  It is a unique 

complication associated with extensive surgery and thought to result from excessive dissection at 

the junction of the cerebellar peduncles and the brainstem 112. 
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1.2.2 Radiation therapy 

While surgery is the ideal first-line treatment for medulloblastoma, some tumors are not 

amenable to resection because of their location- and extension to vital and delicate brain 

structures and the grave side effects associated with surgery in such areas.  Medulloblastomas 

frequently disseminate through the cerebrospinal fluid (CSF) and this makes the tumor 

inaccessible for surgical resection 10, 147.  So cranio-spinal radiation therapy (CSRT) is an 

essential part of the management in many pediatric brain tumors.  The standard CSRT dose 

ranges from 36Gy to 54Gy, depending upon the location of the tumor.  The combination of 

radiation therapy along with surgical resection has improved the 5 year progression free survival 

in patients with medulloblastoma to 50-60 % 1, 10.  

Another challenge in treating medulloblastoma is a high rate of recurrence.  Studies 

performed using different doses of radiation therapy have demonstrated that there is a higher rate 

of tumor recurrence (approximately 50–70%) in medulloblastomas treated with lower doses of 

radiation (36 Gy in 20 fractions to 23.4 Gy in 13 fractions) 31, however a higher dose of radiation 

therapy (54Gy) is associated with more side effects such as long-term intellectual- and learning 

deficits as well as growth hormone deficiencies 1.  Combining chemotherapy with low dose 

radiotherapy is equally effective in reducing recurrence of medulloblastoma compared to higher 

doses of radiation therapy 54.  

1.2.3 Chemotherapy  

Chemotherapy is often used as an adjunct to surgery and radiation therapy.  Common 

chemotherapeutic drugs used in medulloblastoma treatment and extensively studied are 1-(2-

chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), cisplatin, and vincristine 54.  These drugs have 

high lipid solubility, can easily penetrate the blood brain barrier and are used along with lower 
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doses of radiation (36Gy).  The combination of surgery along with radiation and chemotherapy is 

used as the new standard for treatment in children with medulloblastoma 54.  Despite the use of 

all this combination therapy, there has not been much progress in the five-year survival of 

afflicted individuals.  This indicates a need for novel treatment approaches.  Studies done on 

medulloblastomas have revealed that there are specific genetic alterations associated with these 

tumors, and which are responsible for formation of these tumors 2, 22, 60.  These genetic alterations 

include either over-expression of a tumor promoting protein (oncogene), or a decrease in 

expression or loss of activity in tumor suppressor proteins.  Generally a combination of these 

alterations leads to neoplastic transformation 38.  Understanding the events of molecular 

pathogenesis in medulloblastoma would help in designing therapies to target these altered genes 

and prevent the transformation of normal cells to tumor cells.  

1.3 Molecular biology and cell signaling in Medulloblastoma 

1.3.1 Molecular biology of medulloblastoma 

There has been considerable progress in the knowledge of molecular pathogenesis of 

pediatric brain tumors 57, 66.  These tumors arise due to a disorder in cerebellar development.  The 

normal development of the cerebellum is predominantly postnatal 47.  It involves two main 

populations of multipotent neural progenitor cells, granular precursor cells and immature 

Purkinje cells 8 (Figure 1.1).  Granular precursor cells migrate from the rhombic lip of the 

diencephalon to form the external granular layer.  Here these cells undergo proliferation and then 

migrate to form the internal granular layer, where they exit the cell cycle and differentiate into 

mature granule cells.  Migration and differentiation of these cells is maintained by cell signaling 

pathways via interaction with Purkinje cells.  Disruption of normal signal transduction impairs      
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Figure 1.1 Role of cell signaling pathways in medulloblastoma development.  Aberrant 

activation of cell signaling pathways including Sonic Hedgehog (SHH) signaling and serine 

threonine kinases (STKs) leads to rapid proliferation of granule cell precursors (GPC) in external 

granular layer cells and  limits the ability of GPC cells to migrate and terminally differentiate to 

form internal granular layer.  The hyper-proliferation of GCP in external granular layer is 

believed to be responsible for tumor formation (medulloblastoma). 
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migration and differentiation leading ultimately to hyper proliferation in the external granular 

layer and eventually tumor formation (medulloblastoma).  Medulloblastomas have been found to 

exhibit chromosomal loss and gene amplifications 100.  Two main common regions of genetic 

loss have been observed on chromosomes 17 and 9q 23.  Loss of 17p12-3-1 is found in 50% of 

medulloblastomas - most commonly in the classical medulloblastoma subtype 22.  Loss of 9q is 

common in other subtypes of medulloblastoma, including nodular or desmoplastic 

medulloblastoma 116.  The phenomenon of loss of one chromosome, segment, or allele is called 

loss of heterozygosity.  There is loss of normal function of one allele, while the other allele has 

already been inactivated 115.  A commonly altered tumor suppressor gene on chromosome 17p is 

TP53.  Thus, it is possible that loss of heterozygosity on chromosome 17p might be associated 

with mutation of p53 in medulloblastoma.  However, p53 mutation is less frequent in 

medulloblastoma (10%) 22 than loss of heterozygosity on chromosome 17p.  In fact, it has been 

shown that the locus of loss of heterozygosity is more distal (17pl3.3) on chromosome 17 than 

the locus of p53 (17pl3.1) 22.  These results imply that there are other gene candidates on 17p that 

might be responsible for the pathogenesis of medulloblastoma.  Another gene located on 

chromosome 17p13.3 is HIC-1 (Hypermethylated in cancer), which has been shown to be 

epigenetically silenced in medulloblastoma.  Hyper-methylation of the HIC-1 gene promoter has 

been detected in 85% (33/39) of medulloblastoma biopsies and in 88% (7/8) of medulloblastoma 

cell lines 141.  This finding suggests that medulloblastomas exhibit reduced HIC-1 expression by 

hyper-methylation and this gene might have tumor suppressor functions.   

Several other genes involved in embryonic brain development are also found to be altered 

in medulloblastoma.  The human homologue of the Drosophila segment polarity gene encoding 

Patched (PTCH) has been found to be mutated in medulloblastoma 103.  Sonic Hedgehog (SHH) 
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signaling is a key regulator of embryonic development, which regulates cell proliferation and cell 

fate in neural precursors in the nascent cerebellum.  SHH ligand binds to the hedgehog receptor 

Patched (PTCH) and relieves Patched-mediated inhibition of another receptor, Smoothened 

(SMO).  Smoothened activates a SHH mediated cell signaling pathway 48.  Inactivating 

mutations in the PTCH gene have been found in medulloblastoma (MB).  Screening of 

medulloblastoma tumor samples using single-strand conformational polymorphism analysis 

revealed non-conservative PTCH mutations in 27% of the desmoplastic variant MB tumors 103, 

suggesting that the PTCH gene is involved in the development of the desmoplastic variant of 

MB.  To investigate the role of PTCH signaling in medulloblastoma formation, mouse models 

have been generated, that carry deletions of genes in the Shh pathway.  The majority of PTCH 

mutant animals did not develop medulloblastoma tumors 131, suggesting activation of Hedgehog 

signaling alone is not sufficient for medulloblastoma induction.  There is also evidence 

suggesting the involvement of additional signal transduction pathway components in 

medulloblastoma tumor formation 105.  Induction of insulin-like growth factor (IGF) signaling 

along with PTCH mutation in one report enhanced tumor formation from 15% to 39% 105.  

Insulin-like growth factor (IGF) acts on its cognate extra cellular receptors, such as IGF1-R, 

which leads to activation of serine threonine kinases (STKs), including mitogen activated protein 

kinases (MAPKs) and the Akt pathway.  Studies done in our laboratory showed increased 

expression of Akt kinase in medulloblastoma clinical samples, as compared to normal 

cerebellum.  Activation of STK-mediated cell signaling pathways is likely to be an important 

mechanism in medulloblastoma pathogenesis. 

1.3.2 Cell signaling in medulloblastoma  
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           Serine threonine kinases are the family of protein kinases that phosphorylate the hydroxyl 

(OH) group of serine and threonine residues in their substrates.  These kinases include mitogen 

activated protein kinases (MAPKs), protein kinase A (PKA), Akt kinases (protein kinase Bs) and 

protein kinase C isotypes (PKC) 12, 23.  This review will focus on MAPK and Akt (PKB).  The 

MAPK family includes extra cellular signal regulated kinases (Erk), p38 MAPK and c-Jun N-

terminal kinase (JNK).  The MAPKs play a critical role in the transmission of growth promoting 

and growth inhibiting signals from cell membrane receptors to the signal mediators in the 

cytoplasm and nucleus, thereby altering gene expression.  This way MAPKs play an important 

role in maintaining the balance between cell survival and programmed cell death (apoptosis).  In 

general, the JNK and p38 pathways usually promote apoptosis as a response to cellular stress, 

whereas the ERK pathways inhibit apoptosis 23.  Various proteins involved in the MAPK 

pathway are mutated or aberrantly expressed in many human cancers 18, 40.   

               Akt, also known as PKB, is another kinase involved in the regulation of cell survival 25.  

The role of Akt has been well established in the regulation of apoptosis 96.  Apoptosis involves a 

series of biochemical events that lead to activation of cysteine-aspartic acid proteases (caspases).  

These active caspases have proteolytic activity and play an essential role in apoptosis 30.  Based 

on the level at which caspases they are activated in the pathway, they can be categorized as 

initiator caspases (caspase 8, caspase 9) and executor caspases (caspase 3 and 7) 30.  Initiator 

caspases are activated either by the mitochondria via the intrinsic pathway (caspase-9) or by cell 

surface receptors via the extrinsic pathway (caspase-8).  Activation of the intrinsic pathway of 

apoptosis involves release of cytochrome C across outer mitochondrial membrane.  This release 

depends on outer mitochondrial membrane potential which is regulated by proteins Bad (pro-

apoptotic) and Bax (anti-apoptotic).  Increased levels of Bad induce mitochondrial membrane  
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Figure 1.2 Regulation of apoptosis by the Akt pathway.  The Akt pathway regulates the intrinsic 

pathway of apoptosis.  Activation of  this apoptotic pathway depends on mitochondrial release of 

cytochrome C. Release of cytochrome C activates caspases 9, which in turn activates caspases 7 

and caspase 3.  These active caspases cleave target proteins and execute apoptosis.  Release of 

cytochrome C is tightly regulated, and is dependent on the outer mitochondria membrane 

potential.  This membrane potential is regulated by proteins like Bax.  Increased activity of Bax 

protein increases the release of cytochrome C form mitochondria.  Akt directly phosphorylates 

Bax and inhibits its activity.  Akt also phosphorylates caspase 9 and inhibits its proteolytic 

activity leading to inhibition of caspase 3 and caspase 7activation. 

 

 

Figure 1.2 

 



www.manaraa.com

 

 23 

permeability to cytochrome C.  Cytochrome C then binds to apoptosis protease-activating factor 

(APAF), forming the apoptosome and activates caspase-9 33.  Akt mediated cell signaling has 

been shown to directly inhibit the mitochondrial induced caspase activation pathway by 

phosphorylating caspase-9 (Figure 1.2), thus inhibiting its function 23.  Akt can also directly 

phosphorylate Bad (Figure 1.2) and inhibit its function, thereby stabilizing the mitochondrial 

membrane 33.  This indicates that Akt has a role in inhibiting intrinsic pathway of apoptosis. 

The extrinsic apoptotic pathway mediated by the cell membrane includes activation of 

receptors present on cell membrane (death receptors).  These death receptors include Fas 

(CD95), Tumor Necrosis Factor Receptor 1, 2 (TNFR1, TNFR2) and TNF-related Apoptosis 

Inducing Ligand (TRAIL) Receptor.  The Fas ligand binds to receptors on the cell surface and 

recruits the death domains to these receptors.  The recruitment of death domain to these receptors 

activates caspase 8, which further triggers activation of caspase 3 or 7 58.  Inhibition of Akt has 

been shown to activate extrinsic pathway of apoptosis 95, suggesting its role in extrinsic apoptotic 

pathway.  

                   Akt also regulates cell proliferation through the nuclear factor kappa-light-chain-

enhancer of activated B cells (NFkB) signaling.  Akt directly phosphorylates and inactivates 

IkappaB (IkB), which is the endogenous inhibitor of this NFkB –mediated proliferative 

signaling.  Akt mediated phosphorylation of this protein leads to nuclear translocation of NfkB 

and transcriptional activation of its target genes 29. 

1.4 Cell signaling and Serine/threonine kinases 

1.4.1 Akt (Protein kinase B)   
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Figure 1.3 Schematic diagrams of the Akt isoenzymes.  The Akt kinases contain conserved 

domain structures including N-terminal pleckstrin homology (PH) domain, a central kinase 

domain and a carboxyl–terminal hydrophobic regulatory domain (RB).  The protein has two 

important phosphorylation sites in the kinase domain and in the regulatory domain.  The table 

shows the degree of structural homology among these three Akt isoforms. 

 

 

                                        PH Kinase Domain RD

T309 S474

AKT1

PH Kinase Domain RD

T302 S472

PH Kinase Domain RD

T308 S473

AKT2

AKT3  

 

                                        PH = Pleckstrin homology domain 

        RD = Regulatory Domain 

 Table 1.1 Overall homology of primary structure of Akt enzymes. 

 

                                

 

  

 

 

Akt Isoforms Degree of structural homology 

Akt 1 and Akt 2 81%77 

Akt 1 and Akt 3 83%77 
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 Akt, also called protein kinase B (PKB), is a member of the serine/threonine kinase family.  

As mentioned above, Akt plays an important role in the regulation of mammalian cell signaling 

pathways.  The first genetic sequence of Akt was described in the retrovirus, Akt8.  The virus 

containing this gene was able to transform tissue culture cells into tumor-like cells 128.  There are 

three isoforms of Akt [Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ)].  These isoforms are 

encoded by different genes and differentially expressed by cells.  They have 80% homology in 

their structure but vary in their functions 25, 40.  Akt1 (PKBα) is ubiquitously expressed by all 

cells, whereas Akt2 (PKBβ) is predominantly expressed in insulin sensitive cells, including 

skeletal muscle, adipose tissue and the liver.  Akt2 has been shown to be involved in glycogen  

synthesis and glucose uptake in these cells 40, 71.  The expression of Akt3 is restricted to the brain 

and testes.  Despite differing isotype expression by cells, all Akt isotypes share amino acid 

sequence homology in their structure in humans.  Akt proteins have three conserved domains: a 

pleckstrin homology domain (PH), a kinase domain and a regulatory domain (RD) (Figure 1.3).  

The N-terminus of the Akt protein contains the PH domain, which is connected to the kinase 

domain in the middle by a hinge region.  The pleckstrin homology domain is involved in protein-

protein and protein-lipid interactions.  The kinase domain is specific for phosphorylating 

serine/threonine residues in target proteins.  The C-terminal region of Akt is necessary for the 

induction and maintenance of its kinase activity 40.  The three Akt protein kinase isoforms have 

distinct functions in the regulation of metabolism, cell growth, and apoptosis 50.  The 

mechanisms by which their signaling specificity is achieved remain largely unclear.  All Akt 

isotypes have the same mechanism of activation because of their structural similarity. 

1.4.2 Mechanism of Akt activation 

Activation of all Akt isotypes involves the cell membrane (Figure 1.4).  The binding of 
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Figure 1-4.  Schematic presentation of the mechanism of activation of Akt.  Binding of 

growth factors to RTKs activates PI3K which triggers the production of PIP3 from PIP2 at the 

plasma membrane.  PIP3 then interacts with the pleckstrin homology domain of Akt.  Interaction 

between Akt and PIP3 at the cell membrane induces the translocation of Akt from cytosol to the 

membrane.  At the cell membrane Akt is in close proximity with PDK1 and PDK2 and is 

phosphorylated at threonine-308 and serine-473 sites respectively.  Phosphorylated Akt becomes 

active and is involved in cell survival, cell proliferation and inhibition of apoptosis.  
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growth factors, e.g. IGF, to their receptor tyrosine kinase (RTK) on the cell membrane leads to 

auto-phosphorylation of tyrosine residues, which are present in the intracellular region of these 

receptors.  Intracellular proteins containing Src homology (SH2) domains bind to these sites of 

tyrosine phosphorylation 52.  One such protein containing the SH2 domain is 

phosphatidylinositol 3-OH kinase (PI3K).  PI3K contains an 85 kDa regulatory subunit (which 

consists of a SH2 domain) and a 110 kDa (p110) catalytic subunit (kinase domain).  The 

regulatory subunit (p85) of PI3K binds to the receptor tyrosine kinase.  Binding of the regulatory 

unit to receptor activates the catalytic subunit (p110) of PI3K 37.  This active kinase, p110, then 

catalyzes the conversion of phosphatidylinositol-, 4, 5-biphosphate (PIP2) to 

phosphatidylinositol-3, 4, 5-trisphosphate (PIP3) in the cell membrane.  PIP3 then recruits 

proteins containing pleckstrin homology domain (PH) to the membrane, including Akt and 

phospholipid dependent kinase1 (PDK1) 37.  Binding of PDK1 to PIP3 leads to 

autophosphorylation (activation), which in turn phosphorylates Akt at threonine (Thr308) 33.  

Presence of phosphate at Thr308 recruits other kinases for phosphorylation at serine (Ser473).  The 

Ser473 is present in the carboxyl-terminal hydrophobic motif of Akt.  The mechanism of Ser473 

phosphorylation remains unclear.  It is thought that Ser473 is phosphorylated by phospholipd 

depend kinase2 (PDK2).  Recent studies have shown that Ser473 is phosphorylated by 

Mammalian Target of Rapamycin (mTOR) in association with the protein Rictor 113.  The 

conversion of PIP2 to PIP3 is tightly regulated.  There are several phosphatases including 

phosphatase and tensin homologue (PTEN), SHIP1 and SHIP2, which convert PIP3 back into 

PIP2.  A decrease in the function of these phosphatases leads to accumulation of PIP3, which 

recruits and up-regulates Akt-mediated cell signaling.  The inactivation of PTEN by mutations is  
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Table 1.2   Phosphorylation Targets of Akt*  

Substrate Phosphorylation site Effect of Akt-mediated 
Phosphorylation 

Apoptotic 
Markers   

Pro-caspase 9 Ser196 Suppression of caspase-9-induced cell death 

BAD Ser136 Association of BAD with 14-3-3 proteins; 
Suppression of BAD-induced cell death 

IKK 
(IκBkinase) Thr23 Induction of NF- B transcriptional activity 

Forkhead family 
(FKHR,FKHRL1, AFX) 

Thr24, Ser256, Ser319 (FKHR) 
Thr32, Ser253, Ser315 (FKHRL1) 

Thr28, Ser193, Ser258 (AFX) 

Association with 14-3-3 proteins; 
prevention of transcription of proapoptotic  

Genes 

Cell cycle   

p21waf1/cip1 Thr145 Cell cycle progression 

MDM2  Increased p53 ubiquitination, degradation 
Suppression of p53 activity 

Other transcriptional/ 
translational 
Regulation 

  

CREB Ser133 Increased transcription of CREB-regulated 
survival genes 

mTOR/FRAP Thr2446, Ser2448 Modulation of mRNA translation 

AR Ser210, Ser790 Decreased transcription of AR-regulated genes; 
modulation of AR-mediated apoptosis 

TSC1, TSC2  Attenuated inhibitory effect of TSCs on mTOR 

eNOS  Activation of eNOS; production of nitric oxide 

Telomerase Ser227, Ser824 Enhanced telomerase activity 

 

Modified from Curr Cancer Drug Targets.  2004; 4(3):235-56 
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commonly involved in solid tumor formation 90.  Activated Akt catalyzes the phosphorylation of 

target proteins containing the minimum sequence motif of R-Xaa-R-Yaa-Zaa-S/T-Hyd, where 

Xaa is any amino acid, Yaa and Zaa are small residues other than glycine and Hyd is a bulky 

hydrophobic residue (Phe, Leu) 4.  The Akt target proteins are involved in regulation of various 

functions, including apoptosis and cell cycle regulation.  Phosphorylation of these target proteins 

changes their functional properties and promotes cell survival and proliferation 90.  Table 1.2 lists 

many of the well-documented Akt targets and their functional roles in cells. 

1.4.3 Akt signal transduction and role in tumor formation 

Aberrant activation of the Akt pathway is a common underlying factor in the 

pathogenesis of human malignancies.  Activation of Akt in tumor cells can occur by  

amplification of its genes or by activation of its up-stream regulators.  Amplification of Akt1 

gene (up to 20 fold) has been found in 20% of gastric adenocarcinomas 122.  Similar to Akt1, 

Akt2 was also found amplified in approximately 10% of pancreatic carcinoma cell lines and 

pancreatic tumor specimens 19.  Treatment of these pancreatic carcinoma cells with antisense 

Akt2 RNA markedly reduced the tumorigenicity in nude mice supporting a functional role of 

Akt2 in tumorigenicity 19.  But the incidence of gene amplification of Akt isoforms is far less 

than aberrant activation of Akt signaling in tumors.  This suggests that there might be 

deregulation of up-stream proteins that regulate Akt signaling.   

The upstream regulators of Akt signaling include growth factor receptors, Ras protein, 

PTEN and Phosphoinositide Kinase-3 (PI3K).  Mutation of Ras protein has been shown to 

mediate tumor transformation by activation of the Akt pathway 108.  Mutations of PTEN, a 

negative regulator of Akt signaling, are also common in tumors 124, 60.  Reduction of PTEN 

expression was found to be associated with PTEN promoter hyper-methylation in 50% of the 
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medulloblastoma tumor samples 60.  We have shown that Akt isoforms are increased in 

medulloblastoma clinical samples as compared to normal brain.  The aberrant activation of Akt 

signaling in medulloblastoma, thus, might be because of amplification of Akt isoform genes or 

by alteration in Akt regulatory proteins.   

 1.5 Cell signaling and chemo-resistance        

Chemo-resistance- that is, resistance of tumor cells to chemotherapeutic drugs- is another 

challenge in tumor therapeutics.  One of important chemo-resistance is multidrug resistance in 

which tumor cells are resistance to a broad range of structurally and functionally unrelated drugs 

57, 58.  Generally, chemotherapies kill tumor cells by causing DNA damage, which activates death 

inducing cell signaling pathways.  However, some tumor cells possess mutations in these cell 

signaling pathways.  These tumor cells are not capable of inducing apoptosis in response to 

chemotherapy and therefore are resistant to it 30.  

Since cytotoxic drugs kill tumor cells via apoptosis, induction of apoptosis is one of the 

main predictors of response to chemotherapy.  Alteration in the expression of genes that regulate 

apoptosis can affect the chemo-sensitivity of tumor cells leading to resistance to chemotherapies.  

This type of chemo-resistance is termed apoptosis negative multidrug resistance (–MDR) 134.  

Since the ability of a cell to undergo apoptosis is an intrinsic property, it appears that apoptosis-

negative multidrug resistance can mediate a much wider range of drug resistance than any of the 

other molecular resistance mechanisms 13.  It is well known that alterations in the genes involved 

in apoptosis like P53, Bcl-2, Ras have an important role in carcinogenesis.  Much research has 

been done to study the effect of alterations in the expression of various pro-apoptotic and anti-

apoptotic factors on sensitivity of tumor cells to drugs.  A study on pediatric glial tumors showed 

that cytotoxic effects of Doxorubicin and Actinomycin D correlated with Bax expression 89.  In 
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another study conducted with glioblastoma cells, it was shown that as drug resistance of these 

cells increased, the expression of anti-apoptotic Bcl-2 and Bcl-xl increased and expression of 

pro-apoptotic Bax decreased 127.  In addition, a role for proto-oncogenes like Ras and c-Jun in 

protecting the tumor cells from apoptosis has been suggested 14, 102.  Thus, it is clear that further 

studies are required to determine the role of apoptotic pathways in mediating drug resistance and 

whether targeting these apoptotic pathways can be successful in improving the efficacy of 

chemotherapy. 

1.5.1 Akt (PKB) and chemo-resistance 

As mentioned previously Akt is known to promote cell survival 21, 25.  The role of 

PI3K/Akt in human medulloblastoma cell lines has been studied and it has been shown that 

PI3K/Akt pathway is important in medulloblastoma cell growth.  Activation of this pathway is 

associated with decreased expression of PTEN in these cells has been found to contribute to 

chemo-resistance 60.  Chemotherapy (paclitaxel and doxorubicin) induced cell death can be 

enhanced by inhibition of Akt signaling 65.  In a study using ovarian cancer cells, it was found 

that constitutively active Akt (CA-Akt) renders a cisplatin-sensitive ovarian carcinoma cell line 

resistant 148.  The mechanism by which CA-Akt rendered these cells resistant was reported to be 

through inhibition of the mitochondrial/intrinsic pathway of apoptosis induced by cisplatin.  

Clark et al. studied the role of PI3K/Akt pathway in breast cancer chemo-resistance 21.  They 

studied six breast cancer cell lines, four of which had constitutively active Akt 75.  Inhibiting the 

PI3K/AKT with LY294002 (an AKT inhibitor) and dominant negative mutant Akt enhanced the 

induction of apoptosis by chemotherapy (doxorubicin, trastuzumab and tamoxifen).  These 

studies show that Akt activity promotes chemotherapeutic resistance.  Knockout of Akt isoforms 

using siRNA in cancer cells also increased their sensitivity to cisplatin, suggesting that Akt 
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isoforms are involved in chemo-resistance in these cells 42.  In addition to apoptosis, the p53-

murine double minute (mdm2) pathway was also found to be involved in Akt mediated chemo-

resistance.  Chemotherapy induces DNA damage which activates P53, and p53 activation 

increases the expression of proteins involved in apoptosis.  Mdm2 negatively regulates p53, and 

Akt regulates the level of mdm2.  In addition Akt may be directly involved in sensing the DNA 

damage and affecting the kinases or proteins involved at DNA damage check points 63.  These 

studies indicate that the PI3K/Akt pathway plays an important role in chemo-resistance.  

In summary, AKT, which was found to be over-expressed in medulloblastoma cells, 

clearly has a very important role to play in the development of medulloblastomas and can 

enhance cell proliferation by its inhibitory effects on apoptosis.  Suppression of Akt signaling by 

genetic or pharmacological means may, therefore, have therapeutic implications 129.  

1.5.2 Other Cell signaling pathways and chemo-resistance  

1.5.2.1 MAPK and chemo-resistance 

MAPK is part of the mitogen activated protein kinase family.  This kinase is activated 

after stress and chemotherapeutic insults, and promotes apoptosis.  Activated JNK (member of 

MAPK) phosphorylates transcription factors such c-Jun and ATF2 which then bind to AP-1 and 

increase FasL transcription.  Increased FasL transcription induces caspase activity, leading to 

apoptosis.  Chemotherapy-induced JNK activity has been studied in ovarian carcinoma cell lines 

84.  These cell lines were treated with cisplatin at different time points.  JNK activity against 

GST-c-Jun protein and phosphorylated JNK and p38 levels on western blots were found to be 

higher in the cisplatin-sensitive cell line.  Ovarian carcinoma cell lines sensitive to cisplatin also 

showed prolonged activation of JNK/ P38 whereas cisplatin-resistant cell lines were found to 

show only transient activation of JNK/P38.  This differential activity was thought to be 
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responsible for chemo-sensitivity, indicating the role of these kinases in cisplatin-induced death.  

For further confirmation, the authors used c-Jun -/-3T3 fibroblasts and inhibited JNK with a   

pyridinylimidazole compound SB202190, and found that inhibiting these kinases made cisplatin-

sensitive cells resistant 84.  These findings support the notion that one of the key determinants of 

chemotherapy-induced apoptosis is the duration of JNK and P38 activation, and defects in this 

pathway may contribute to chemo-resistance.   

1.5.2.2 P53 and chemo-resistance 

Most chemotherapeutic agents act by damaging DNA, activating cell signaling pathways 

that lead to cell death.  One of the main mediators of the DNA damage response is the tumor 

suppressor gene P53 119.  The exact mechanism by which DNA damage activates P53 is 

unknown but it is hypothesized that DNA damage leads to specific post-translational 

modifications of P53 121.  Phosphorylation is one potential mechanism that regulates the activity 

of P53.  In vitro studies have identified multiple sites of phosphorylation within the amino- and 

carboxyl- terminal (Serine6, 15, 33) of P53.  The main kinases identified in the phosphorylation 

of p53 at Serine 6, 33) are ATM and DNA-PK 121.  The source of phosphorylation in p53 at ser 

15 is debatable.  While some studies implicate ATM phosphorylase119, cells from patients with 

ataxia telangiectasia (and are consequently deficient in ATM) also showed phosphorylation at 

p53 at ser 15 upon DNA damage.  This suggests that ATM is not absolutely required for 

phosphorylation 121.  Phosphorylation of P53 increase its ability to trans-activate its target genes.  

It also decreases P53 degradation (ubiquitination) by decreasing its interaction with mdm2.  The 

duration and severity of DNA damage determines the fate of cell whether to undergo p53 

mediated cell cycle arrest or apoptosis.  Short duration and less severe damage results in cell 

cycle arrest and cell repair by p53-mediated increase in expression of the proteins p21cip1/waf1 and 
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GADD45.  Prolonged and severe damage, on the other hand, leads to induction of apoptosis 

through the mitochondrial death pathway by up-regulating proteins like Bax and Fas 41. 

1.6 Targeting cell signaling pathway and Alkyl phospholipids (ALPs) 

As mentioned above, significant progress has been made in treatment of pediatric brain 

tumors through advances in neurosurgery, radiotherapy and chemotherapy.  Despite these 

measures, the five-year survival is still low and there are significant long-term sequelae 

associated with these therapies.  With the expansion in knowledge of pediatric tumor biology, 

new genes and proteins involved in tumor survival and proliferation are established as being 

over-expressed in these tumors.  Targeting these molecules (molecular targeted therapy) may 

augment the effect of conventional therapies or even replace them.  

1.6.1 Overview 

Most of the available chemotherapeutic agents target DNA, thus affecting cell division 

and proliferation.  Lack of selectivity is the major problem with these chemotherapeutic drugs as 

these affect even normal tissues with high proliferation rates including bone marrow (leading to 

anemia, leucopenia, infection, thrombocytopenia bleeding), the gastrointestinal epithelial cells 

(diarrhea, vomiting, nausea, surface ulcerations), and the cells of the hair follicles (alopecia) 43.  

Alkyl-lysophospholipids (ALPs) are synthetic ether-linked analogues of lysophosphatidylcholine 

lipids that have been found to have promising anticancer activity and minimal effect on normal 

cells.  The prototype of these ALPs is eldofosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-

phosphocholine).  Perifosine (octadecyl-[N, N-dimethyl-piperidinio-4-yl]-phosphate) is clinically 

the most advanced Akt inhibitor and is structurally related to eldofosine.  It is orally bioactive, 

has an improved tolerability profile and has been reported to exert a strong anti-neoplastic effect 

in human tumor cell lines 139.  Perifosine is currently being tested in phase II clinical trials for 
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treatment of human cancers 74.  It has a long half-life as it is not inactivated by acyltransferase 

into lecithin (phosphatidylcholine, PC) or conversion by lysophospholipase in to 

glycerophosphocholine 43.  

1.6.2 Mechanism of action of Alkyl phospholipids (ALS) 

The mode of action of Alkyl phospholipids (ALS) primarily involves interfering with turnover of 

phospholipids.  ALS or phospholipids are internalized into cells by raft-mediated endocytosis 

and phospholipids translocase 91.  They then interfere with choline cytidyltransferase (CT) 

(figure 1.6), one of the main enzymes for phosphatidylcholine synthesis 6.  This leads to 

inhibition of lipid turnover in cell membrane and therefore inhibition of lipid dependent cell 

signaling pathways in tumor cells (Figure 1.6).  Akt and MAPK are the two main cell signaling 

pathways which require lipid moieties as substrates for their activation 69.  Treatment with 

perifosine has been shown to affect the phosphorylation status of Akt on Ser473 and Thr308 in 

prostate cancer cells within 30 minutes, without affecting the total amount of Akt protein.  

Perifosine interferes with phosphorylation of Akt by decreasing its translocation to the plasma 

membrane and thereby decreasing the association of Akt and PDK1, which is critical for Akt 

activation 69.  The MAPK pathway is another cell signaling system that is affected by ALS.  The 

effect of perifosine on pErk varies from cell to cell.  Usually, perifosine treatment leads to a 

decrease in pErk levels, but in some cells including HaCaT human keratinocyte cells, perifosine 

treatment activates Erk 28.  No studies have been conducted as yet, to determine how perifosine 

might affect pErk.  One possible mechanism by which perifosine may increase pErk is through  
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Figure 1.5 Mechanism of action of alkylphospholipids, perifosine*.   

There are two structural moieties in perifosine (shown in this figure), the polar head group and 

the non-polar alkyl chain.  Perifosine is internalized into cell membranes, since the nonpolar 

group is hydrophobic in nature.  It then interferes with lipid turnover by inhibiting choline 

cytidyltransferase (CT).  CT is the main enzyme for lipid (phosphatidylcholine) synthesis, which 

is a major constituent of cell membranes, and also plays a role in membrane-mediated cell 

signaling 140.  Inhibition of lipid turnover interferes with Akt and MAPK activation.  Inhibition 

of Akt and MAPK affects cell survival and proliferation.  Perifosine also activates the stress 

signaling pathway JNK/SAPK, leading to apoptosis. 

 

   * Modified from http://www.aeternazentaris.com/docs/products/img/en/3.perifosine1.gif 
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Ras, which is inhibited by pAkt.  Perifosine treatment decreases pAkt which attenuates this 

inhibition and might therefore increase the levels of pErk.  

In summary Akt has a protective role in cellular apoptosis, hence, targeting Akt is a novel 

approach to overcome the apoptotic resistance in medulloblastoma.  Akt has been found to be 

over-expressed in a number of human tumors including medulloblastoma.  This project was 

designed to check the efficacy of perifosine on tumor cell survival.  We also sought to determine 

whether this Akt inhibitor could be used as an adjuvant therapy for medulloblastoma in 

combination with conventional therapy.  

The following specific aims were proposed: 

1. To characterize Akt isotypes in medulloblastoma and examine the role of Akt activity on cell 

viability in medulloblastoma cell lines by attenuating Akt signaling pharmacologically.   

2. To determine if inhibition of Akt leads to a decrease in chemo/radio-resistance in 

medulloblastoma cell lines.  

3. To determine whether the mechanism of action of cell death following Akt down regulation in 

medulloblastoma cell lines involves the apoptotic pathway.  

4. To examine the effect of perifosine on cell cycle arrest in medulloblastoma.  

This study showed that treatment of medulloblastoma cells with the Akt inhibitor, 

perifosine led to rapid induction of cell death in medulloblastoma cell lines, with pronounced 

suppression of phosphorylated Akt in a time- and concentration- dependent manner.  The 

mechanism of cell death involved apoptosis, as indicated by cleavage of caspases.  Combining 

single dose treatment regimens of perifosine with sub-lethal doses of etoposide or irradiation 

which are currently used in treatment of these lethal tumors) demonstrated a greater than additive 

effect in medulloblastoma cells DAOY.  Low dose (15 µM) perifosine induced cell cycle arrest 
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at the G1 and G2 cell cycle checkpoints, accompanied by increased expression of the cell cycle 

inhibitor p21cip1/waf1.  We further explored the mechanism of p21waf1/cip1 up-regulation in 

medulloblastoma cells.  Perifosine did not increase p53 protein expression level, one of the main 

regulators of p21waf1/cip1 transcription.  In addition to p53, we also examined the effect of 

perifosine on other regulators of p21waf1/cip1 including Akt pathway and MAPK pathway.  

Perifosine activates the MAPK (mitogen-activated protein kinase) signaling pathway in VC-312 

without much effect in DAOY cells.  However, studies are needed to explore the mechanism of 

perifosine induced p21waf1/cip1 in medulloblastoma.  

These experiments indicate that perifosine, either alone or in combination with other 

chemotherapeutic drugs, might be an effective therapeutic agent for the treatment of 

medulloblastoma. 
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Abstract  

Medulloblastoma (MB) is the most common malignant cancer of the central nervous 

system in children.  Akt kinases are part of a survival pathway that has been found to be 

significantly elevated in medulloblastoma.  This pathway is a point of convergence for many 

growth factors and controls cellular processes that are critical for tumor cell survival and 

proliferation.  The alkyl-phospholipid perifosine (octadecyl-(1, 1-dimethyl-4-piperidylio) 

phosphate) is a small molecule inhibitor in clinical trials in peripheral cancers which acts as an 

inhibitor of Akt kinases.  Medulloblastoma cell cultures were used to study the effects of 

perifosine response in preclinical studies in vitro.  Perifosine treatment led to rapid induction of 

cell death in medulloblastoma cell lines, with pronounced suppression of phosphorylated Akt in 

a time and concentration dependent manner.  LD50 concentrations were established using 

viability assays for perifosine, cisplatin and etoposide.  LD50 treatment of medulloblastoma cells 

with perifosine led to cleavage of caspase 9, caspase 7, caspase 3 and PARP, whereas caspase 8 

was not detectable.  Combination single dose treatment regimens of perifosine with sub-lethal 

doses of etoposide or irradiation demonstrated a greater than additive effect in medulloblastoma 

cells.  Lower perifosine conentrations induced cell cycle arrest at the G1 and G2 cell cycle 

checkpoints, accompanied by increased expression of the cell cycle inhibitor p21cip1/waf1.  

Treatment with p21 siRNA prevented the perifosine induced cell cycle arrest.  These findings 

indicate that perifosine, either alone or in combination with other chemotherapeutic drugs, might 

be an effective therapeutic agent for the treatment of medulloblastoma. 
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Introduction  

Medulloblastoma (MB) is the most common and fatal brain tumor among children, 

accounting for 12–25% of all pediatric tumors of the central nervous system (CNS) 114.  

Medulloblastomas are most commonly characterized by highly mitotic small round cells with a 

high nuclear to cytoplasmic ratio, and classified as primitive neuro-ectodermal tumors (PNETs).  

The current treatment includes surgery, chemotherapy and radiation therapy.  Current clinical 

trials include high dose chemotherapy for high risk and recurrent medulloblastoma, but few 

targeted small molecule inhibitors specific to medulloblastoma have been described.  Despite 

these therapies, five year survival is at best 60-70%, and moreover, these therapies often affect 

the developing CNS, causing memory, attention, motor function, language and visuospatial 

deficits 106.  There is a need for the development of novel agents that can improve therapeutic 

results and avoid these deleterious treatment sequelae.  Several signaling molecules have been 

associated with medulloblastoma development, including Sonic Hedgehog (Shh) 103 and 

members of the WNT pathway 46.  Recently Akt kinases, which were originally discovered as 

homologues to the oncogene in the thymoma-associated acute transforming retrovirus Akt-8 123, 

have been found to have elevated activation levels in these tumors.  Furthermore, elevated active 

Akt levels have been shown to be associated with features of malignancy such as proliferation, 

survival, glucose metabolism and revascularization in other cancers 9, 144.  Three Akt isotypes 

have been identified, Akt1, Akt2 and Akt3 136.  It is currently unknown which of these isotypes 

are predominantly expressed in medulloblastoma.  In animal models, exogenous activation of the 

Akt1 kinase pathway significantly enhanced Sonic Hedgehog–induced medulloblastoma 

formation 105indicating a pro-malignancy interaction of these two pathways. 
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 Due to the importance of Akt signaling in cancer biology, several small inhibitory 

molecules of Akt pathway have been developed for clinical use in cancer therapy 18.  As Akt  

activation is mediated by active upstream receptor proteins such as growth factor and adhesion 

receptors, and is activated largely within lipid-dependent protein signaling complexes at cell 

memebranes, phospholipid analogue compounds known as alkylphospholipids have been 

developed to interfere with this process, including perifosine[octadecyl-(1, 1-dimethyl-4-

piperidylio) phosphate].  

Perifosine is a novel phospholipid analogue which is currently undergoing phase I and 

phase II clinical evaluation 24, 74.  Although the exact mechanisms of action of perifosine are still 

being investigated, it is thought to interfere with the turnover and synthesis of endogenous 

membrane phospholipids, thereby affecting lipid- mediated signal transduction pathways, 

including inhibition of Akt 96, mitogen- activated protein kinase activation 111 and activation of c-

Jun-NH2-kinase (JNK).  Perifosine is an orally bioavailable drug that has shown anti-tumor 

activity in preclinical models 69, 138.  Previously perifosine has been shown to induce apoptosis 

and cell cycle arrest in cancer cell lines 39, 77, 99.  However, perifosine has not been studied in 

medulloblastoma.   

 In this study our data demonstrate that endogenous active Akt (pAkt) is present at high 

levels compared to normal brain samples in medulloblastoma and derivative cell lines.  

Treatment of these cell lines with perifosine decreases active Akt levels in a dose- and time-

dependent manner.  We demonstrated that perifosine treatment led to rapid decreases in cell 

survival in medulloblastoma cells.  In an attempt to understand the mechanism of perifosine 

mediated cytotoxicity, we examined the effect of perifosine on apoptotic regulatory proteins and 
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cell cycle distribution after treatment.  Our data show that perifosine treatment led to up-

regulation of caspase activity and programmed cell death mechanisms that are consistent with 

the intrinsic apoptotic pathway, including cleavage of caspase 9, caspase 7, caspase 3 and PARP 

in both cell lines and p21waf1/cip1 -mediated cell cycle arrest.  We also report that exposure to 

etoposide and radiation followed by a post-treatment with perifosine resulted in greater than 

additive effects on cell death, indicating that perifosine has chemo- and radio-sensitizing effects 

in medulloblastoma cells.  These findings indicate that perifosine, either alone or in combination 

with other chemotherapeutic drugs, might be an effective therapeutic agent for the treatment of 

medulloblastoma, the most common malignant brain cancer in children. 

Materials and Methods  

Cell culture  

Two medulloblastoma cell lines were used in this study, DAOY (from American Type 

Culture Collection), and VC-312, established under approved research protocols, and 

characterized in our laboratory (Pediatric Neuro-Oncology Laboratory, Virginia Commonwealth 

University).  Cells were grown in Dulbecco’s modified Eagles medium (DMEM) supplemented 

with 10% heat-inactivated fetal bovine serum, glutamine and 1% penicillin-streptomycin 

solution at 37°C temperature with 5% CO2 in a humidified incubator.  

Antibodies and Reagents  

Antibodies against pan-Akt, phosphorylated Akt (Ser473 and Thr308), caspases-3,-7 and 

-9, and Erk1/2 were purchased from Cell Signaling Technologies (Beverly, MA).  Anti-PARP 

antibody was obtained from Roche Applied Science (Indianapolis, IN).  Anti- p21waf1/cip1   
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monoclonal antibody was obtained from DAKO Cytomation (Carpenteria, CA).  Mouse 

monoclonal P53 antibody and Phospho-Erk1/2 monoclonal antibody were obtained from Santa 

Cruz Biotechnology, Inc (Santa Cruz, CA).  Perifosine was obtained from Keryx 

Pharmaceuticals (New York, NY) and was reconstituted as a 10 mM stock solution in sterile 

PBS.  Etoposide and Cisplatin were purchased from Sigma-Aldrich (St. Louis, MO) and 

reconstituted in DMSO as stock solutions immediately prior to use.  

 Cell Lysis and Immunoblot Analysis  

Cell preparations were subjected to lysis and protein extraction using RIPA lysis buffer 

(50mM Tris-HCl, 150mM NaCl, 1% NP-40, 0.5%SDS, 1%deoxycholic acid) containing 

protease and phosphatase inhibitors (EMD Biosciences; San Diego CA).  Cell lysates were 

collected on ice and centrifuged for 15 min at 14,000 rpm, after shearing with a 1 ml syringe, 

fitted with 26 gauge needle.  Supernatants were stored at -800C.  Protein concentrations were 

measured using the DC Protein Assay (Bio-Rad Laboratories, Hercules, CA).  Protein samples 

were separated by loading 20 ug or 40 ug of protein on Novex NuPAGE 4-12% Bis-Tris gels 

(Invitrogen), followed by electrophoresis for 55 minutes, and transferred to nitrocellulose 

membranes at 35 V for 2 hours (Invitrogen).  After the transfer was completed, the protein blots 

were blocked in a buffer solution containing 5% non-fat milk or 5% purified bovine serum 

albumin (BSA) for 1 h at room temperature.  BSA and non-fat milk are included to prevent non 

specific binding of antibody to the membrane due to low affinity non-specific interactions with 

non-target proteins; milk protein may contain phosphatases and alter the phosphorylation state of 

proteins of interest.  Therefore BSA protein is used when phosphorylated epitopes are being 

examined with phosphorylation state-specific antibodies.  The membranes were incubated with 
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primary antibodies overnight at 4°C and then washed four times in Tris-buffered saline 

containing 0.5% Tween-20 (TBST).  After washing, the membranes were probed with anti-rabbit 

or anti-mouse secondary antibody (1:3,000-1:6,000, Rockland Inc., Rockland, ME, USA) 

conjugated with horseradish peroxidase for 1.5 h at room temperature.  Western Blots were 

developed using the ECL Detection System (GE Healthcare-Amersham Biosciences, Piscataway, 

NJ, USA).  β-Actin antibody (1:5,000, Sigma Biotechnology) was used as a control for protein 

loading.   

Cell Viability Assays  

Cell viability was determined using the Cell Titer-Glo luminescent ATP assay (Promega 

Inc., Madison, WI).  Medulloblastoma cells were plated in white, opaque-walled, sterile, 96-well 

plates at the density of 1000 cells per 100 µL of growth medium per well.  Cells were allowed to 

settle overnight.  The next day cells were treated with the Akt inhibitor perifosine (1 µM to 50 

µM), versus vehicle control for 24 to 72 hours.  Viable cells were determined by adding Cell-titer 

Glo Luminescent Viability Assay lysis reagent (Promega, Madison, WI), incubating at room 

temperature with manual agitation for 2 minutes then on a rotating platform at 4°C for 10 

min, and allowing equilibration for 15 minutes at room temperature.  Luminescence was detected 

using a luminescent plate reader (Fluostar Optima, BMG Lab Technologies GMBH, Durham, 

NC).  Mean relative light units for replicates within each condition were compared using 

Students t tests with the significance threshold set at 95% confidence (p <0.05).  

Exposure of cells to Ionizing Radiation  
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Cells (1 X 106) were plated in 100 mm dishes in complete media (5% FBS) and left 

overnight.  The next day cells were irradiated with 60Co γ rays at a dose rate of 1.1 Gy/min.  

After 24 hrs, cells were treated with different concentrations of perifosine.  Cell viability was 

determined after 72 hrs in cell viability assays as described above.  

Cell Cycle Analysis by Flow Cytometry 

Cells (1 X 106) were plated in 100 mm dishes with growth media without serum. These 

cells were serum starved overnight for synchronization.  Next day serum deficient media was 

replaced with complete media (5% FBS).  Cells were treated with different concentrations of 

perifosine, and collected after a period of 12 or 24 hours.  After treatment, cells were trypsinized 

and cell suspensions washed twice in PBS.  Cell fixation was performed in 1 ml of 70% ethanol.  

After 30 minutes, cells were centrifuged and resuspended in 400 µl of propidium iodide/RNAse 

B solution (Apo-Direct Staining solution, BD Biosciences-Pharmigen; San Diego, CA) for 30 

min at room temperature.  Cells were measured on a FACScanto flow cytometer and data 

analyzed using FACSDiva 5.0 software (BD Biosciences).   

Short interfering RNA transfection  

  Cells were transfected with p21waf1/cip1 siRNA pre-designed validated oligonucleotides, 

containing sequences directed against p21waf1/cip1 (ABI-Ambion).  Cells were plated in six well 

plates in triplicate at the density of 2 X 105 cells per well, and allowed to attach overnight.  The 

next day media was replaced with 500 µl Optimem containing 2% serum.  Cells were transfected 

with siRNA to a final concentration of 25 nM.  In 100 µl serum-free Optimem, 5µl of a 10 µM 

siRNA stock solution (Non-target control siRNA, Dharmacon, or p21WAF1 siRNA, Ambion) 
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was premixed with 3µl of oligofectamine for each respective well.  Reagents were mixed well 

and incubated at room temperature for 2 minutes to allow complexes to form.  After reagents for 

transfection were added to the respective wells and cells were placed on a platform rocker for 4 

hours in a sterile incubator at 370 C.  After 4 hours, cells were supplemented with 1500 µl of 

Optimem (10% serum), were taken off the rocker, and incubated for 20 additional hours.  

Twenty four hours after beginning the transfection, cells were treated with 15 µM perifosine for 

24 hrs.  Cells were collected for western blot analysis or fixed in 70% ethanol for flow cytometry 

studies.    

Statistical Analysis 

Data were evaluated by comparing the means and standard errors of the mean of replicate 

experiments.  Data are expressed as the mean and standard error of the mean (SEM) of at least 

three independent experiments.  Statistical analysis was performed using an unpaired Student’s t-

test.  A p value <0.05 was considered significant. 

Results  

AKT isotype expression and its activation level in medulloblastoma.   

To characterize endogenous protein expression levels of Akt isotypes, Akt1, Akt2, Akt3, 

and the phosphorylated forms of Akt at the two major phosphorylation sites, Threonine 308 and 

Serine 473, were examined by western blot under normal growth conditions.  As shown 

in Figure 2.1A, Akt1 and Akt3 were detected in both cell lines at significant levels, whereas 

Akt2 protein was detected more predominantly in DAOY cells.  Despite apparent differences in 

isotype expression levels, robust phosphorylated-Akt was detected in both cell lines using 



www.manaraa.com

 

 48 

antibodies non-selective for individual isotypes.  These results suggest that even though the 

protein expression levels of Akt isoforms may vary in these cell lines, both have highly active 

endogenous Akt signaling.  Transcript expression levels for each Akt isotype were also examined 

in medulloblastoma clinical specimens (n=11) compared with normal cerebellum (n=4).  The 

abundance of messenger RNA was examined by Taqman QPCR assay.  As shown in Figure 

2.1B, mRNA levels for Akt1 were similar to normal brain, while Akt2 and Akt3 were 

significantly elevated in medulloblastoma, measured as a ratio to the internal control mRNA for 

β-actin.  
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Figure 2.1 Expression of Akt isoforms in medulloblastomas.  A. Detection of all three Akt 

isoforms expressed in medulloblastoma cell lines.  Western blotting analysis of protein lysates 

derived from DAOY and VC-312 were probed with isoform-specific antibodies for Akt1, Akt2, 

Akt3 and P-Akt-phospho-Serine 473.  ß-actin is used as an internal control.  B. Taqman assay of 

Akt isoforms in medulloblastoma tissues in vivo compared with normal cerebellum (n= 4 normal, 

black bars; n= 11 medulloblastoma, grey bars, *p< 0.05).  The mRNA levels for Akt1 were 

similar to normal brain, while Akt2 and Akt3 were significantly elevated in medulloblastoma, 

measured as a ratio to the internal control mRNA for β-actin.  
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Figure 2.1 A 
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Figure 2.1 B 
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Suppression of Akt by perifosine in medulloblastoma  

Perifosine impairs Akt phosphorylation by interfering with the binding of the PH domain 

of Akt to PIP3 99.  We first examined the effect of perifosine on the phosphorylation status of 

Akt in medulloblastoma cell lines (Figure 2.2).  Western blot analysis with phospho-specific 

AKT antibodies showed a decrease in phospho-Akt in a concentration- dependent manner at 3 

hours.  To determine the time-dependent effect of perifosine on phosphorylated active Akt 

levels, we treated DAOY and VC312 cells with 25 µM of perifosine (the approximate LD50 for 

both cell lines).  There is complete loss of detectable phospho-Akt in both cell lines at this 

concentration by 6 hours.  As Akt activity depends on its phosphorylation status and perifosine 

treatment leads to loss of phosphorylation, this indicates that perifosine induces inactivation of 

Akt in medulloblastoma cell lines.   
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Figure 2.2 Dose dependent suppression of active Akt by perifosine in DAOY and VC-312 

cells.  DAOY and VC-312 cells were treated with increasing doses (25-100 µM) of perifosine for 

3 hours and cell lysates were prepared.  Western blots of protein lysates were probed with 

antibodies to Akt and P-Akt-phospho-Serine 473.  ß-actin is used as an internal loading control.  

The treatment groups were compared with control cells (C) which were treated with vehicle 

control.  There is a decrease in phospho-Akt in a concentration- dependent manner at 3 hours.  
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Figure 2.2 
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Inhibition of Akt decreases cell viability in medulloblastoma.  

To determine whether perifosine treatment would result in a decrease in viability of 

medulloblastoma cells, DAOY and VC-312 cells were incubated in the presence of increasing 

concentrations of perifosine for 24 hrs.  Cell viability was evaluated by Cell Titer-Glo 

luminescent ATP assay.  Perifosine induced a dose dependent decrease in cell viability in both 

cell lines, shown in Figure 2.3.  The LD50 (lethal dose to 50%) for DAOY and VC-312, 

determined using 3 replicate viability assays, was 25 µM.  Rapid loss in viability was apparent at 

concentrations greater than 10 µM, and near-complete loss in survival was observed at 50 µM.   
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Figure 2.3 Effect of perifosine administration on medulloblastoma cell viability.  Cells were 

seeded at a density of 103 cells per well in 96 well plate in replicates of six, and incubated for 24 

hrs with 1, 10, 25, 50, and 100 µM perifosine.  Relative cell number was measured by 

luminescent ATP viability assay.  The cell viability (% Survival) was calculated with the 

following equation: % Viable cells (% Survival) = (x/y)*100 where ‘x’ is the number of viable 

cells in conditions exposed to perifosine, ‘y’ is number of cells treated with vehicle control.  

Error bars indicate standard deviation within an experiment, with significant differences 

determined using Student’s T-test, p< 0.05.  Representative experiments are shown from four 

independent trials. 
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Figure 2.3 
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Effect of perifosine on apoptotic pathway  

We further examined the induction of caspase cleavage in time course studies using 

concentrations at or above the established LD50 for perifosine.  To determine the mechanism of 

cell death after perifosine treatment, medulloblastoma cells were treated with perifosine and 

examined for decreases in cellular proteins related to apoptosis.  Poly-ADP ribosylation protein 

(PARP) and caspase cleavage have been used as sensitive indicators of cellular apoptosis.  

Cleavage of the effector caspases-3 and -7 and the upstream initiator caspase-9 was assayed by 

western blot using antibodies which detect pro-caspases and cleavage-specific forms indicative 

of activity.  Treatment of DAOY and VC-312 cells with 25µM and 30 µM doses of perifosine, 

respectively, resulted in a time-dependent cleavage of caspases-9 (35 kDa), -3 (17/19 kDa), -7 

(20 kDa) and PARP (85 kDa), shown in Figure 2.4.  We were unable to detect caspase-8 in either 

cell line.  As shown in Figure 2.4A and 2.4B, caspase-3 and PARP cleavage are detected by 6 

hours in both cell lines, concurrent with loss of detectable phospho-Akt (Figure 2.4A).  No 

significant change in total Akt is observed under the same conditions.  Caspases-9 and 7 were 

also present in cleaved forms by 6 hours (total and cleaved forms shown for DAOY in Figure 

2.4C).   
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Figure 2.4 Time dependent effect of perifosine on apoptotic induction.  A. Effect of 

perifosine on phosphorylated Akt, total Akt, and caspase-3 cleavage, in DAOY and VC-312 

cells.  B. PARP cleavage detected in DAOY and VC-312 after perifosine.  C. The effect of 

perifosine on caspase-9, and -7 cleavage in DAOY and VC-312 cells.  DAOY and VC-312 cells 

were treated with 25 µM and 30 µM perifosine, respectively, and cell lysates were then subjected 

to western blotting.  Treatment of DAOY and VC-312 cells with 25µM and 30 µM doses of 

perifosine, respectively, resulted in a time-dependent cleavage of caspases-9, -3, -7  and PARP. 
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Figure 2.4 A 
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Figure 2.4 B 
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Figure 2.4 C 
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Perifosine sensitizes medulloblastoma cells to etoposide and radiation induced cytotoxicity 

We next examined whether inhibition of the Akt survival pathway enhances etoposide 

and radiation induced cytotoxicity.  The combined effect of perifosine with commonly 

administered chemotherapy drugs etoposide and cisplatin, or with ionizing radiation was 

evaluated in dose response studies.  Figure 2.5 shows the dose dependent effects of etoposide in 

DAOY and VC312 cell.  LD20 doses were first chosen to evaluate the combined effects of 

perifosine on cell viablilty.  The effects of perifosine were additive in both cell lines.  In contrast, 

low doses of etoposide with clinically achievable concentrations of perifosine (10 µM) generated 

greater than additive losses in cell survival in DAOY cells (Figure 2.5A).  Comparison of mean 

cell survival values demonstrated significant differences between etoposide treatment alone and 

in combination with perifosine (p= 0.0002 and 0.0000007 for 0.1 µM etoposide and in 

combination with 10 or 20 uM perifosine) and versus VC312 and DAOY respectively).  Dose-

dependent cell survival studies with single dose ionizing radiation demonstrated LD50 values of 

10 Gy for DAOY cells and for VC312 cells.  LD10 values were used in combination treatments 

with increasing concentrations of perifosine (10-30 µM).  As shown in Figure 2.5B, 8 Gy 

treatment of DAOY cells and 10 uM perifosine caused a significant increase in cell killing 

compared to either treatment alone (p = 0.0032 and 0.0013 for combination treatment with 8 Gy 

single dose and 10 and 20 µM perifosine, respectively).  Combination index (CI) values were 

used to describe combined drug effect.  Synergistic effect is considered when CI < 0.85 and 

antagonistic when CI > 1.1 and additive when values are close to 1.  CI values calculated under 

optimized conditions for DAOY were determined to be 0.84126 for DAOY treated 72 hours with 

0.1 µM etoposide and 10 µM perifosine, and 0.783 for VC312 cells under the same conditions.  

Similarly, after 8 Gy irradiations, the CI values for combined treatment with 10 µM were 0.73 
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for DAOY and 1.1 for VC312, indicating synergy in DAOY, but not in VC312 at the doses 

examined.   
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Figure 2.5 Perifosine co-treatment augments cell death by etoposide and irradiation in 

medulloblastoma cells.  DAOY cells were exposed for 72 hrs to the indicated concentration of 

etoposide (0.1 µM) (A) and radiation 8 Gy (8) alone or in combination with 10, 15 and 20 µM 

perifosine added after 24 hrs.  Cell viability was evaluated by ATP viability assay.  The cell 

viability (% Survival) was calculated with the following equation: % Viable cells (% Survival) = 

(x/y)*100 where ‘x’ is the number of viable cells in conditions exposed to perifosine, ‘y’ is 

number of cells treated with vehicle control.  Combination effect was determined by combination 

index (CI).  
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Figure 2.5 A 

 

 

 



www.manaraa.com

 

 67 

 

 

 

Figure 2.5 B 
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Effect of perifosine on cell cycle in medulloblastoma cells 

To examine mechanisms other than caspase-mediated apoptosis responsible for the 

cytotoxic effects of perifosine, and because of the reported link of Akt activity with the cell cycle 

in medulloblastoma and other cancers, we sought to investigate the effect of perifosine on 

DAOY and VC-312 cell proliferation.  To study dose dependent effects, DAOY and VC-312 

cells were exposed to increasing concentrations of perifosine (5-30 µM) for 12 and 24 hours and 

then analyzed for cell cycle profiles by determining the DNA content of treated cell populations 

(Figure 2.6).  Minimal effects were seen on cell cycle at the 5 µM dose of perifosine in DAOY 

and VC-312.  The maximum effect was seen at 15 µM dose of perifosine, in which there was a 

significant increase in the G2-M phase population (paired T-test, p= 0.00039) and decrease in 

G0/G1 and S phase (p= 0.00038 and 0.017, respectively) of DNA in VC-312 cells (Figure 2.6B).  

In contrast to VC-312, perifosine treatment led to a significant increase in G0/G1 (p=0.00117) 

and decrease in G2-M phase (p=0.0134) in DAOY cells (Figure 2.6C).  Further examination of 

the time-dependency of the observed growth arrest determined that there was a significant 

difference at 24 hrs as compared to 12 hours, consistent with an accumulation of treated cells at 

the cell cycle checkpoint.  
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Figure 2.6 Perifosine arrests proliferating medulloblastoma cells at cell cycle checkpoints.  

Exponentially growing DAOY and VC-312 cells were treated with perifosine (15µM), and 

analyzed by flow cytometry.  A. Representative histograms obtained from flow cytometric 

analysis of cellular DNA content after staining with propidium iodide (PI).  B. Analysis of mean 

% total cells from three independent trials.  Means compared with T-test.  Error bars indicate 

standard error of the mean, with significance set at p=0.05.  Inset values: Relative % cells in 

Go/G1, S, and G2/M. DNA content was analyzed in medulloblastoma cells treated with 15 µM 

perifosine for 24 hrs.  Perifosine treatment increases the G2-M phase population and decreases 

G0/G1 and S phase populations in VC-312 cells.  In contrast to VC-312, perifosine treatment of 

DAOY cells led to a significant increase in G0/G1 and decrease in G2-M phase. 
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Figure 2.6 A 
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Figure 2.6 B 
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Figure 2.6 C 
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Dependence of perifosine induced cell cycle arrest on p21waf1/cip1  

 
To determine which cell cycle regulatory proteins were involved in the observed cell 

cycle arrest following perifosine treatment, western blot analysis of control and treated cell 

lysates was performed.  The p21waf1/cip1, CDK inhibitor protein level was found to be robustly 

increased by perifosine in a dose-dependent manner, within 6 hours of treatment.  As shown in 

figure 2.7, there is a marked increase in p21waf1/cip1 protein expression in DAOY at 15 µM (mean 

5.28, SD 0.21) and 25 µM (mean 4.82 fold, SD 0.45).  Similarly an increase was found in VC-

312 cells at 15 µM (mean 5.08 fold, SD 0.51) and 25µM (mean 10.4, SD 1.42).  To further 

investigate the role of p21waf1/cip1 in perifosine induced cell cycle arrest, small interfering RNA 

duplexes were transfected into the two cell lines to knock down p21waf1/cip1 protein expression 

prior to perifosine treatment.  After successful knock down of p21waf1/cip1, shown by western 

blotting in Figure 2.8A, flow cytometric analyses were repeated to analyze cell cycle 

distribution.  Loss of p21waf1/cip1 by RNA interference prevented the perifosine induced cell cycle 

arrest, whereas perifosine induced arrest was again demonstrated at cell cycle checkpoints in 

non- transfected controls and non-targeting siRNA control cell populations (Figure 2.8B).   
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Figure 2.7 Perifosine induced cell cycle arrest is associated with induction of p21waf1/cip1.  

DAOY and VC-312 cells were exposed with perifosine (15 µM) for 12 hrs.  Cell lysates were 

prepared and western blotting was performed.  The membrane was probed with p21waf1/cip1.  β-

Actin was used to estimate equal protein loading.  P21waf1/cip1 expression increased on exposure 

to perifosine in both cell lines. 
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Figure 2.7 
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Figure 2.8 Suppression of p21waf1/cip1 by RNA interference reverses perifosine-induced cell 

cycle arrest in medulloblastoma.  Cells were plated in six well plates in triplicate at the density 

of 2 X 105 cells per well, and allowed to attach overnight.  Transfection was carried out with 

siRNA using oligofectamine and Optimem as described in the text.  Twenty four hours after 

transfection, cells were treated with 15 µM of perifosine for 24 hrs.  Cells were collected for 

western blotting analysis or fixed in 70% ethanol for flow cytometry studies.  A. Suppression of 

p21waf1/cip1 protein expression is observed by western blotting 48 hours after transfection.  B. Cell 

cycle analysis of p21waf1/cip1 siRNA and control treated medulloblastoma cells in the presence or 

absence of perifosine (15 µM).  
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Figure 2.8 A 
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Figure 2.8 B 
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Discussion  

Medulloblastomas are the most common malignant pediatric brain tumors, but their 

molecular pathology is not fully understood.  The phosphatidylinositol 3'-kinase -mediated Akt 

signaling pathway has been found to have a role in tumor cell survival and proliferation (20).  

Recently, elevated activation of the PI3K/Akt signaling pathway has been found to be a common 

event in medulloblastomas 60.  The activation of Akt signaling has been attributed to deregulation 

of different components of the PI3K/Akt pathway, including PTEN deletion 124, PI3K gene 

amplification, Akt amplification 110, as well as Akt over expression 140.  The exact mechanism of 

Akt activation in medulloblastomas is still unknown, but one possible mechanism is reduced 

expression of PTEN 60.  Perifosine (octadecyl-[N,N-dimethyl-piperidinio-4-yl]-phosphate), a 

synthetic alkyl-lysophospholipid structurally related to ether lipids, is thought to interfere with 

Akt mediated signal transduction pathways after it is internalized via raft-mediated endocytosis 

134.  Here we have shown the efficacy of perifosine in decreasing phosphorylated Akt in DAOY 

and VC-312 medulloblastoma cell lines.  Perifosine, in a dose-dependent manner, decreased cell 

survival of both cell lines, and the loss of cell viability followed a marked reduction in phospho-

Akt-S473.  Perifosine treatment decreased phospho-Akt levels in both a dose- and time-

dependent manner.  This data is in accordance with previously reported data of perifosine action 

on other cell lines 95.  Perifosine treatment resulted in up-regulation of P-ERK in 

medulloblastoma cell lines.  The up-regulation of Erk signaling could be because of activation of 

Raf-mediated activation of mitogen activated signaling pathway as P-AKT has been reported to 

negatively regulate Raf-1 125.  The decreased cell survival in medulloblastoma was due to 

apoptosis and a decrease in cell cycle progression, as indicated by western blot and flow 

cytometric analysis of samples treated with perifosine.  Perifosine treatment resulted in 
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activation of multiple caspases including initiator caspase-9, and effector caspase-3 and -7.  

Perifosine treatment also led to cleavage of PARP, which is a caspase-3 substrate.  Inhibition of 

caspase-3 using pharmacological inhibitors attenuated the perifosine induced decrease in cell 

viability (Appendix B); substantiating the role of caspase activation in perifosine induced cell 

death.  Perifosine treatment has been found to induce activation of the Fas/CD95 death receptor 

in multiple myeloma cells, leading to caspase-8 activation, in turn leading to cleavage of Bid, 

and subsequent caspase 9 activation 44, 55.  Perifosine might have similar mechanisms of action in 

medulloblastomas.  However, we were unable to detect caspase-8 expression in either cell line 

examined, consistent with reports of epigenetic silencing of caspase-8 in medulloblastoma 51. 

To examine the cytotoxic effect of perifosine in more detail, cell cycle progression of 

medulloblastoma cell lines exposed to perifosine was examined.  We observed that a 15 uM 

perifosine treatment for 24 hrs led to accumulation of DAOY cells in G1 phase and VC-312 cells 

in the G2-M phase of cell cycle.  As cell cycle progression is governed by the cyclical activation 

of cyclin dependent kinases (CDKs), which are regulated by cyclins and cdk inhibitors 

(p21waf1/cip1, p27) 118, it was of interest to evaluate the effect of perifosine on these cell cycle 

regulatory proteins.  Unlike most chemotherapeutic anticancer drugs, which target DNA, 

perifosine is inserted in the plasma membrane and is thought to interfere with signal transduction 

pathways that are critical for cell survival.  Due to their distinct mode of action, 

alkylphospholipid drugs are considered as attractive candidates to combine with chemotherapy 

and radiotherapy to overcome therapeutic resistance 139.  In addition, there is limited efficacy of 

perifosine monotherapy reported in a variety of solid malignancies.  We also tested the effect of 

perifosine on etoposide and radiation-induced cell death in the two human medulloblastomas cell 

lines.  Perifosine enhanced etoposide and radiation-induced cell death.  This effect was additive 
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for VC-312 and synergistic for DAOY, resulting in marked increase in cell death.  Etoposide is a 

DNA damaging anticancer drug which targets DNA topoisomerases, interfering with DNA 

structural modification during DNA synthesis and mitosis, and thereby disabling mitotic 

progression.  Topoisomerase inhibitors have been shown to have inhibitory actions on cell cycle 

progression in late S and G2/M phases of the cell cycle 128.  This inhibitory mechanism on S-

phase progression results in late S-phase and G2-M phase arrest, reflective of a DNA repair 

process in progress, and leading eventually to mitotic catastrophe and cell death 36.  In leukemia 

cells, in addition to G2-M arrest, which results in mitotic cell death, a concurrent induction of 

apoptosis occurs 104.  The observed effects of perifosine on cell cycle arrest in medulloblastoma 

cells in the present study is similar to that observed in human T cell leukemia, which show a 

synergistic cell death effect when co-treated with etoposide 95.  The apparent synergy seen in the 

current study was observed at clinically achievable concentrations of perifosine, which is 

encouraging for further development of optimal dosing regimens in pediatric patients.  Perifosine 

appears to be a promising adjuvant treatment, deserving of further evaluation in pediatric brain 

tumors such as medulloblastoma. 
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Abstract  
 

Perifosine is a novel alkyl-lysophospholipid drugs which upon exposure to cellular 

membranes becomes inserted into the cell membrane and affects lipid synthesis and turnover.  

Perifosine has shown promising preclinical activity in many tumors, including leukemia and 

prostatic carcinoma cells.  Similar to other cancer cell types, perifosine has strong antineoplastic 

potential against medulloblastoma cells.  In the previous chapter we studied the effects of 

perifosine on apoptotic regulatory proteins in medulloblastoma but perifosine effects on cell 

cycle regulatory proteins are not well established.  We therefore, assessed the effect of perifosine 

on the cell-cycle regulatory molecules Cyclin D1, phospho-Cdc2 as well as the involvement of 

Akt, Erk 1/2 and p53 proteins in two cell lines of medulloblastoma (VC-312 and DAOY).  There 

was no change in Cyclin D1 expression in DAOY cells treated with perifosine, whereas VC-312 

cells showed an increase in Cyclin D1 levels.  Perifosine treatment did not significantly affect the 

levels of phospho-Cdc2 protein expression in either cell line.  We also explored whether a 

decrease in pAkt or an increase in pErk in response to perifosine mediates induction of 

p21waf1/cip1.  Perifosine mediated induction of p21waf1/cip1 levels in medulloblastoma cells could 

not be prevented by constitutive activation of Akt, nor by an increase in phosphorylation of 

Erk1/2.  Furthermore, we determine the role p53 in perifosine induced p21waf1/cip1.  Our findings 

show that perifosine treatment does not increase the overall protein levels of p53.  Further studies 

are required to determine the critical signaling pathways mediating perifosine mediated 

p21waf1/cip1 response in medulloblastoma. 
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Introduction 

Most chemotherapeutic drugs currently used for treating medulloblastoma act by 

targeting dividing cells and thus could also potentially affect normal brain and peripheral cells 

thus leading to significant side effects.  An alternative or additional approach for treating 

medulloblastoma would be to use drugs that target specific tumor promoting proteins (onco-

proteins) over-expressed by tumor these cells.  The aberrant expression of these onco-proteins is 

believed to activate cell-signaling pathways including PI3K/Akt.144.  These activated cell 

signaling pathways could thus be selectively targeted by drugs such as perifosine.  Perifosine 

acts by interfering with phospholipid synthesis and turnover.  We have shown that perifosine has 

strong antineoplastic activity against medulloblastoma cells that involves the induction of 

apoptosis and cell cycle arrest.  In the last chapter we had shown an effect of perifosine on 

apoptotic regulatory proteins.  However, the effect of perifosine on cell cycle regulatory proteins 

in medulloblastoma was not established.  

There is a large body of literature which suggests that alterations of specific cell cycle 

regulatory proteins are frequent and necessary events underlying the development of tumors 117.  

Thus, modulation of these proteins is an attractive avenue for the therapy and prevention of 

human neoplasms.  The cell cycle regulatory proteins include cyclins, cyclin-dependent kinases 

(cdks), and cdk inhibitors132.  Activity of cdks is regulated by the cyclins (positive regulators) 

and the cyclin-dependent kinase inhibitors (CKIs, negative regulators).  Medulloblastoma cells 

have been shown to have mutations in highly conserved beta-catenin phosphorylation sites 

involved in protein stability34.  Increased beta-catenin has been shown to increase the expression 

of Cyclin D76.  Absence of Cyclin D proteins drastically decreases the incidence of 
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medulloblastoma formation in murine models101.  Loss of cdk inhibitor p18 (INK4C) protein 

expression was detected in a significant fraction of human medulloblastoma specimens, pointing 

toward a role for INK4C in suppression of medulloblastoma formation.  These findings suggest 

the involvement of these proteins in the development of human meduloblastoma88.  In this study, 

we determined the effect of perifosine on cell-cycle regulatory proteins including cyclins and 

cyclin dependent kinase signaling pathways.  

In our studies perifosine treatment increased the expression of Cyclin D1 in VC-312 

short-term medulloblastoma cultures whereas minimal changes were detected in DAOY cells.  

Perifosine treatment does not have a significant effect on phosphorylated-Cdc2 protein levels.  

We also showed that perifosine treatment decreased the expression of p53 (a transcriptional 

activator of p21waf1/cip1) at early post-treatment time points (12 hours) in VC-312 cells, whereas 

the same treatment did not have significant effect on p53 levels in DAOY cells.  Finally, we 

determined the involvement of Akt and MAPK signaling in perifosine-mediated increased in 

p21waf1/cip1.  Perifosine decreased phosphorylated Akt in both cell lines and increases phospho-

ERK1/2 in VC-312 cells.  These finding suggest that perifosine-mediated increase in p21waf1/cip1 

does not appear to require a decrease in phospho-Akt nor an increase in phosphorylated Erk1/2.  

Therefore, the mechanism of the perifosine mediated increase in p21waf1/cip1, which is critical for 

perifosine induced cell cycle arrest in medulloblastoma cells, is still unclear.  

Materials and Methods 

Cell culture  

Human medulloblastoma derived cell lines (DAOY, VC-312) were used in this study.  

DAOY cells line was obtained from American Type Culture Collection (ATCC), and VC-312 
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cell line was established and characterized in our laboratory (Pediatric Neuro-Oncology 

Laboratory, Virginia Commonwealth University).  The primary culture of VC-312 was obtained 

under approved research protocol from a pediatric medulloblastoma patient who underwent 

surgery at the Virginia Commonwealth University Health System, Medical College of Virginia 

Hospital.  The tumor tissue was dissected with a scalpel and dissociated in to small pieces 

separating it from connective tissue and blood vessels.  The dissected tissue was washed twice in 

PBS and centrifuged at 300 x g, and the resulting pellet was resuspended in 3 ml of Dulbecco’s 

PBS (DPBS) containing 200 units papain solution (Roche) and 2 units DNase I (Sigma-Aldrich).  

After trituration, the pellet was incubated for 30 minutes, with trituration every 10 minutes, 

followed by ten passes through a sterile 18 gauge syringe, one pass through a 35 µM mesh filter, 

and centrifugation.  The resulting pellet wash washed twice in DPBS, centrifuging between each 

wash.  The final pellet was evenly distributed into each well of a six-well tissue culture plate, and 

cultured in DMEM/F-12 (1:1) supplemented with 5% fetal bovine serum, 1% N-2 supplement 

(Invitrogen), 20 ng/mL recombinant human epidermal growth factor (Becton Dickinson), and 10 

ng/mL recombinant human basic fibroblast growth factor (Becton Dickinson) ), 1% antibiotic-

antimycotic solution (Invitrogen).  VC312 cultures were incubated in a humidified incubator at 

37°C with 5% CO2 in 95% air.  Primary and subsequent passages of VC312 were cryopreserved 

and all experiments were performed using cells initiated from passage 5 stock vials.  After 

establishing the cell line, these cells were grown in Dulbecco’s modified Eagles medium 

(DMEM) supplemented with 10% heat-inactivated fetal bovine serum, L-glutamine, 1% 

penicillin-streptomycin solution at 37°C temperature with 5% CO2 in a humidified incubator.  

When cells reached 80% confluence, they were removed and suspended using a trypsin–EDTA 
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solution (0.05% trypsin), washed, centrifuged, and replated.  The culture medium was changed 

every second day after plating. 

Antibodies and Reagents  

Antibodies against pan-AKT, phosphorylated AKT (Ser473), and Erk1/2 were purchased 

from Cell Signaling Technologies (Beverly, MA).  Anti- p21cip1/waf1 monoclonal antibody was 

obtained from DAKO Cytomation (Carpenteria, CA).  Mouse monoclonal P53 antibody and 

Phospho-Erk1/2 monoclonal antibody were obtained from Santa Cruz Biotechnology, Inc (Santa 

Cruz, CA).  Perifosine was obtained from Keryx Pharmaceuticals (New York, NY) and was 

reconstituted as a 10 mM stock solution in sterile PBS.   

 Protein Extraction  

Protein was extracted from medulloblastoma cell lines using Radio-Immunoprecipitation 

Assay buffer (RIPA buffer).  The ingredients of RIPA buffer include: 50 mM Tris HCl pH 8, 150 

mM NaCl, 1% NP-40, 0.5% sodium deoxycholate and 0.1% SDS.  Protease and phosphatase 

inhibitors (EMD Biosciences; San Diego CA) are added prior to use (100uL of each in 10mL of 

RIPA).  Cells were plated in six well plates (at a density of 2 x 106 cells per well) overnight.  At 

the time of protein extraction media was removed and the cells were washed with ice cold PBS.  

The six well plates were transferred to ice and 200 µL of RIPA was added to each well.  After 5 

minutes cells were scraped and sheared with a 1 ml syringe, fitted with 26 gauge needle.  Fifteen 

minutes after adding RIPA, cells were scraped and transferred to 1.5mL Eppendorf tubes.  Cell 

lysates were then centrifuged at maximum speed in a table top centrifuge for 20 minutes at 4o C.  

The supernatant was transferred to another fresh labeled Eppendorf tube.  Protein 
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concentrations were measured using the DC Protein Assay (Bio-Rad Laboratories, Hercules, 

CA).   

Western Blot  

Protein samples were separated using denaturing polyacrylamide gel electrophoresis 

(PAGE).  Cell lysates were taken from aliquots stored at -800 C and were thawed on ice.  The 

NuPAGE® loading Buffer (10X) was mixed with proteins (20ug or 40ug) along with antioxidant 

and nanopure water protein and heated at 70°C for 10 minutes.  The proteins were resolved on a 

Novex NuPAGE 4-12% Bis-Tris gels (Invitrogen), followed by electrophoresis for 55 minutes, 

and transferred to nitrocellulose membranes at 35 V for 2 hours (Invitrogen).  After the transfer 

was completed, the protein blots were blocked in a buffer solution containing 5% non-fat milk or 

5% BSA for 1 h at room temperature.  The membranes were incubated with primary antibodies 

overnight at 4°C and then washed four times in Tris-buffered saline containing 0.5% Tween-20 

(TBST).  After washing, the membranes were probed with anti-rabbit or anti-mouse secondary 

antibody (1:3,000-1:6,000, Rockland Inc., Rockland, ME, USA) conjugated with horseradish 

peroxidase for 1.5 h at room temperature.  Western Blots were developed using the ECL 

Detection System (GE Healthcare-Amersham Biosciences, Piscataway, NJ, USA).  β-

Actin antibody (1:5,000, Sigma Biotechnology) was used as a control for protein loading.   

Pharmacologic treatments 

DAOY and VC-312 cells were plated in six well plates at the density of 2x105 cells per 

well in DMEM with 10% FBS.  Cells were pretreated with U0126 (10 µM) for 1 hr and then 

perifosine was added (15 µM, 25 µM) for 12 hrs.  Cell lysates were collected for 

immunoblotting. 
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Adenoviral transfection 

Constructs encoding constitutively active AKT (CA-Akt) or dominant negative AKT 

(DN-Akt) in adenoviral expression plasmids were kindly provided by collaborator Dr. Paul Dent 

(Department of Biochemistry, VCU).  Adv-CA-Akt; adenovirus encoding constitutively active 

Akt1 is a replication defective adenovirus encoding a plasmid constructed to express constitutive 

active Akt1.  Active forms of Akt have been obtained by fusion of NH 2 -terminal c-Src 

myristoylation residues to Akt1, and its dominant negative form mutated by encoding alanine in 

place of the Serine473 and the Threonine308 position.  This functionally blocks phosphorylation 

by upstream kinases, resulting in a dominant negative Akt.  Cells were seeded in six well plates 

in triplicate at the density of 2 X 105 and allowed to attach overnight.  The following day, cell 

growth media was replaced with 600 µl Optimem (antibiotic free with 2% serum; Invitrogen).  

Medulloblastoma cells were infected with adenovirus containing constitutively active AKT, or 

dominant negative AKT.  The viral MOI (multiplicity of infection) used for infection ranged 

from 3 to 30.  Control CMV-LacZ adenovirus was used as a control with the same MOI as the 

recombinant AKT virus.  Cells were rocked for 4 hours at 370 C.  After 4 hours, cells were 

supplemented with 1200 µl of Optimem (no antibiotics with 10% serum) for 20 hrs.  Cells were 

incubated for a further 24 hours (48 hour’s total) to ensure adequate expression of the transduced 

gene product.  After transduction, cells were treated with 15 µM of perifosine for 24 hrs.  Cell 

lysates were collected for western blot.  

Results 
 
Effect of perifosine on cyclins and cyclin dependent kinase (cdk) in medulloblastoma cells.  

Since previous studies showed perifosine treatment results in accumulation of cells in 

G2/M phase in VC-312 cells and G1/S phase in DAOY cells, we investigated whether 
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differential effects of perifosine on cyclins and cdk inhibitor proteins may explain this difference.  

In the previous chapter we reported the effect of perifosine on the cdk inhibitor p21waf1/cip1.  Here 

we determined the effect of perifosine on cyclins.  Cells were treated with perifosine (15 µM and 

25 µM) for 12 hrs and 24 hrs and protein expression of Cyclin B, Cyclin D1 was examined by 

western blot analysis.  DAOY cells demonstrated no change (p >0.05) in protein expression on 

exposure to perifosine (15 µM, 25 µM) for 12 hrs and no change at 24 hrs (Figure 3.1).  VC-312 

cells showed a statistically significant increase in Cyclin D1 protein levels on exposure to 

perifosine for 12 hrs (mean 1.82 fold, SD 0.08) and 24 hrs (mean 1.89 fold, SD 0.04) (Figure 

3.1).  Cyclin B protein expression was not detected in both cell lines, under the conditions used.  

Lastly, we determined the effect of perifosine on cyclin dependent kinase Cdc2 in these cells.  

Cells were treated with perifosine (15 µM, 25 µM) and protein expression of phosphorylated 

Cdc2 was determined.  There was no significant change in phospho-Cdc2 in DAOY and VC-312 

cells at the 15 µM or 25 µM dose of perifosine (p>0.05) except 15 µM dose of perifosine 

decreased phospho-Cdc2 (0.78 SD 0.07) (Figure 3.2).  
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Figure 3.1 Effect of perifosine on cyclins D in medulloblastoma cells.  Cells were treated with 

15 µM and 25 µM perifosine for 12 hrs (Figure 3.1A) and 24 hrs (Figure 3.1B).  Cells were 

subsequently harvested and lysed using RIPA buffer.  The cell lysates (40 µg) were resolved in 

NuPage gels and analyzed by Western blotting analysis for Cyclin D1.  β-Actin was used as 

internal control.  At both doses of perifosine DAOY cells demonstrated no change in cyclin D1 

protein expression on exposure to perifosine whereas VC-312 cells showed a statistically 

significant increase in Cyclin D1 levels on exposure to perifosine.   
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Figure 3.1A 

 

 

 

 

 

 

Figure 3.1B 
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Figure 3.2 Effects of perifosine treatment on cyclin dependent kinase, phospho-Cdc2, in 

medulloblastoma cells.  VC-312 and DAOY cells were treated with 15µM and 25µM dose of 

perifosine for 24hrs.  The cell lysates (40 µg) were resolved in NuPage gels and analyzed by 

Western blot for phospho-Cdc2.  β-Actin was used to ensure equal protein loading.  There was 

minimal change in expression of phospho-Cdc2 in DAOY and VC-312 cells.  There was no 

significant change in the expression of phospho-Cdc2 in DAOY and VC-312 cells in reponse to 

perifosine (p>0.05) except at 15 µM dose of perifosine in DAOY.  

.  
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Figure 3.2 
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Role of Akt mediated cell signaling pathways in perifosine mediated up-regulation of 

p21waf1/cip1 

The precise mechanisms by which perifosine treatment increases the expression of 

proteins such as p21waf1/cip1 in medulloblastoma are unclear.  Previously we have shown that 

perifosine decreases the level of phospho-Akt in both medulloblastoma cell lines, DAOY and 

VC-312.  One of the direct substrates for Akt is p21waf1/cip1 146.  p21waf1/cip1 is reported to be 

directly phosphorylated by Akt at two sites (Thr145 and Ser146) in the carboxyl terminus.  

Phosphorylation of Ser146 significantly increases p21 protein stability in glioblastoma cell lines 

78.  To investigate the association of Akt mediated cell signaling pathway and perifosine-induced 

p21waf1/cip1, we used adenoviral constructs expressing the constitutively active, myristoylated 

form of Akt, which is not affected by perifosine (Figure 3.3).  In a preliminary (one), perifosine 

(25 µM) treatment led to a 0.15 fold decrease in pAkt and a 0.65 fold decrease in pGSK3 beta 

expression in untreated control and vector control cells but not in cells expressing constitutively 

active Akt (Figure 3.3).  Perifosine treatment resulted in a 2.5 fold increases in p21waf1/cip1 in 

control cells and a 3.2 fold increase in cells expressing CA-Akt.  These results suggest that 

induced expression of CA-Akt in VC-312 cells overcomes the effect of perifosine on Akt 

phosphorylation.  However, there is still an increase in p21waf1/cip1 expression in VC-312 cells 

expressing CA-Akt.  These findings suggest that perifosine-induced up-regulation of p21waf1/cip1 

may not require a decrease in phosphorylated Akt in medulloblastoma cells.  We have not 

however ruled out the possibility that differences in subcellular localization between the CA-

AKT transgene and AKT/ p21waf1/cip1 interaction could explain these results.  In addition, viral 

infection may also have an effect on signaling pathways that impact p21waf1/cip1. 
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Figure 3.3 Perifosine induced p21waf1/cip1 does not require a decrease in pAkt in 

medulloblastoma cells.  VC-312 cells were infected with adenoviral constructs expressing 

constitutively active form of Akt (CA-Akt).  Cells were subsequently treated with 25µM dose of 

perifosine for 12 hrs.  Cell lysates (40µg) were resolved using NuPage gels and analyzed by 

western blot for phospho-Serine473-Akt, phospho-Serine9-Gsk3β, p21waf1/cip1 and β-Actin using 

appropriate antibodies.  Perifosine treatment led to a decrease in pAkt and pGSK3 beta 

expression in untreated control and vector control cells but not in cells expressing constitutively 

active Akt.  Perifosine treatment also increased p21waf1/cip1 in control cells and cells expressing 

CA-Akt. 
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Figure 3.3 
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Effect of perifosine on MAPK signaling 

Cell cycle progression is regulated by distinct cell signaling pathways in cancer cells that 

include the Akt and MAPK pathways.  We have already shown that perifosine decreases 

phospho-Akt in medulloblastoma cells.  Here we determined the effect of perifosine on the 

MAPK pathway activity by checking the level of phospho-Threonine 204 Erk1/2 (pErk).  VC-

312 and DAOY cells were treated with 15µM and 25µM dose of perifosine for 12 hours.  

Perifosine treatment led to a significant increase in pERK in VC-312 cells at 15µM (mean 1.67 

fold, SD 0.05) and 25 µM (mean 1.83 fold, SD 0.039) (Figure 3.4).  There was a significant 

decrease at 25µM (mean 0.66, SD 0.063) dose of perifosine in DAOY cells (Figure 3.4).  There 

was no change in total ERK in either cell line with perifosine treatment except in DAOY at 

25µM dose (mean 0.87 fold, SD 0.063).  Thus, MAPK signaling activation could lead to 

p21waf1/cip1 up-regulation in VC-312 cells.  Similar studies done in human keratinocyte cells have 

shown that activation of ERK by perifosine occurred at concentrations similar to those required 

for p21waf1/cip1 up-regulation, 28.   
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Figure 3.4 Perifosine induces Erk 1/2 phosphorylation in VC-312 medulloblastoma cells.  

Cells were cultured for 12 hours in the presence of 15µM and 25µM concentrations of perifosine.  

Cell lysates were obtained using RIPA buffer.  Obtained cell lysates were subjected to Nu-PAGE 

and electro transferred to nitrocellulose membranes.  The membranes were then probed with the 

anti-pERK, anti-Erk antibodies.  β-actin was used as an internal loading control.  Perifosine 

treatment led to an increase in pERK in VC-312 cells at 15 µM and 25 µM perifosine and a 

decrease at 25µM perifosine in DAOY cells.  There was no change in total ERK in VC-312 cells, 

and no change in DAOY cells at both doses of perifosine.   
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Figure 3.4 
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Role of MAPK pathway in perifosine-mediated p21waf1/cip1 up-regulation 

 
To further investigate the role of MAPK signaling in perifosine mediated up-regulation of 

p21waf1/cip1, we chose VC-312 medulloblastoma cells since perifosine treatment increased the 

pERK levels in these cells.  Cells were first treated with MEK inhibitor (U0126) for one hour, 

and subsequently with perifosine for 12 hours.  MEK inhibitor U0126 decreased the 

phosphorylation (mean 0.71 fold, SD 0.18) of pERK (Figure 3.5 lane 4) and perifosine alone 

increased the pERK level at 15µM (mean 1.39 fold, SD 0.19) and 25µM (mean 1.58 fold, SD 

0.20) (Figure 3.5 lane 2, 3).  Co-incubation of perifosine with MEK inhibitor U0126 (10µM) 

attenuated perifosine mediated induction of pERK (mean 1.02 fold, SD 0.03) (Figure 3.5 lane 6).  

MEK inhibitor treatment also increased (mean 5.2 fold, SD 0.36) the expression of p21waf1/cip1 at 

15 µM dose of perifosine that were effective in inhibiting pERK expression in DAOY cells 

(Figure 3.5).  MEK inhibitor treatment plus perifosine treatment led to a greater increase (mean 

18.2 fold, SD 1.79) in the expression of p21waf1/, as compared to perifosine alone (mean 11.6 

fold, SD 2.81) (Figure 3.5 lane 4).  So these findings suggest that inhibition of MAPK signaling 

through MEK inhibitor alone increases p21waf1/cip1 expression in medulloblastoma and treatment 

with MEK inhibitor plus perifosine has an increased effect on p21waf1/cip1 up-regulation versus 

perifosine alone.  
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Figure 3.5 Effect of MEK inhibitor U0126 on perifosine induced p21waf1/cip1 in VC-312 cells.  

VC-312 cells were exposed to perifosine in the presence and absence of U0126.  Cell lysates 

were obtained using RIPA buffer.  The protein extracts were subjected to Nu-PAGE and 

transferred to nitrocellulose membranes.  The membranes were then probed with antibodies 

directed at pERK and p21waf1/cip1.  β -actin was used as an internal control to confirm equal 

loading in different samples.  Inhibition of MAPK signaling using MEK inhibitor increases the 

expression of p21waf1/cip1 in medulloblastoma.   
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Figure 3.5 
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Effect of perifosine on p21waf1/cip1 and p53 proteins expression 
 

P53 is transcription factor of p21waf1/cip1.  So, we investigated if perifosine affects p53 

protein expression thus explaining the perifosine mediated increase in p21waf1/cip1 expression.  To 

determine the effect of perifosine on the cell cycle regulatory proteins p53 and p21waf1/cip1 in 

medulloblastoma cell lines,  DAOY and VC-312 cells were treated with perifosine (15, 25 µM) 

for 24hrs and p21waf1/cip1 and p53 levels were determined by western blot.  As shown in figure 

3.6A, there is a robust increase in p21waf1/cip1 protein expression in DAOY at 15 µM (mean 5.28, 

SD 0.21) and 25 µM (mean 4.82 fold, SD 0.45) of perifosine as shown before in chapter 2.  

Similarly an increase was found in VC-312 cells at 15 µM (mean 5.08 fold, SD 0.51) and 25µM 

(mean 10.4, SD 1.42).  P53 protein expression appeared to decrease in VC-312 cells at 15 µM 

(0.80 fold) and 25uM (0.30 fold) and minimally changed in DAOY cells at 15µM (1.02 fold) and 

25µM (1.08 fold) with perifosine treatment (data from single experiment, N=1).  We also 

examined the time dependent effect of perifosine (25µM, LD50 dose) on p21waf1/cip1 and p53 

protein expression in VC-312 cells.  P21waf1/cip1 expression was increased at 3 hours (mean 21.7 

fold, SD 2.34) after exposure to perifosine (Figure 3.6B).  Based on these preliminary results we 

determined the effect of perifosine on the p53 level at early time points.  In contrast to 

P21waf1/cip1, there was no change in p53 level (mean 0.89 fold, SD 0.36, p>0.05) at 3 hours. 
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Figure 3.6A Effects of perifosine treatment on induction of p53 and p21waf1/cip1 in 

medulloblastoma cells.  VC-312 and DAOY cells were treated with perifosine (15µM and 

25µM) for 24 hrs.  Western blot demonstrated an increase in p21waf1/cip1 protein expression at 

15µM and 25µM doses of perifosine treatment without any effect on p53 protein level.  β-Actin 

was used to ensure equal protein loading.  There was increase in p21waf1/cip1 protein expression in 

DAOY and VC-312 cells at both doses of perifosine.  However, perifosine treatment decreases 

the expression of P53 protein in VC-312 cells and no affect in DAOY cells.   
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Figure 3.6A 
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Figure 3.6B Time-dependent effect of perifosine treatment on induction of p53 and 

p21waf1/cip1 in VC-312 cells.  VC-312 cells were treated with 25µM perifosine for 24 hrs.  

P21waf1/cip1 protein expression increased at 3hrs after perifosine treatment without any effect on 

p53 protein level.  β-Actin was used as a control for protein loading.  P21waf1/cip1 expression was 

increased at 3 hrs after exposure to perifosine.  In contrast there was no change in p53 level at 3 

hours. 
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Figure 3.6B 
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Discussion 
 

Therapeutic intervention of cancer by molecularly targeted therapies, such as with 

perifosine, is a new mode of treatment that merits continuing investigation.  These therapies can 

be very effective and less toxic than chemotherapy and radiation therapy.  The anticancer 

potential of perifosine has been studied in various cancer cell models 39, 74, 91.  Findings in the 

present studies have shown that perifosine has a cytotoxic effect against medulloblastoma cells.  

These cytotoxic effects could be due to alteration of apoptotic regulatory proteins and induction 

of cell cycle arrest.  In previous studies, we have already shown an effect of perifosine on 

apoptotic regulatory proteins, however, an effect of perifosine on cell cycle regulatory proteins in 

medulloblastoma has not previously been established.  In this chapter we studied the effect of 

perifosine on cell cycle regulatory proteins. 

The cell cycle is regulated by a family of proteins including cyclin dependent kinases 

(cdks), cyclins and cdk inhibitors.  Cyclin dependent kinases are the main regulators of cell cycle 

progression, which are positively and negatively regulated by Cyclins (Cyclin D1, D2, D3, E) 

and cdk inhibitors (p21, p27, p57), respectively.  Over-expression of cyclins and loss of cdk 

inhibitors have been reported in medulloblastoma.  Cyclin dependent kinases promote the 

transcription of genes that are essential for cell cycle by phosphorylating specific target proteins 

such as Rb.  These proteins form complexes with transcription factors and phosphorylation of 

these proteins releases the transcription factors (E2F), hence increasing transcription of genes 142.  

Studies have shown that 22% of medulloblastomas do not express detectable levels of cdk 

inhibitor p18 133.  Also knock-out mice that are heterozygous or nullizygous for p27 develop 

medulloblastoma rapidly if they have another tumor suppressor mutated (“two-hit” tumor 

suppressor model) 5.  Loss of these cdk inhibitors gives a proliferative advantage to tumor cells 
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49.  CDK inhibitors fall into two categories: namely, the INK4 family of proteins (p16/INK4A, 

p18/INK4C) and the Cip/Kip family (p21waf1/cip1, p27/Kip1) 88.  Our results show that perifosine 

treatment causes an increase in expression of p21waf1/cip1, however protein levels of cell cycle 

regulators p16/INK4A, p18/INK4C and p27/Kip1 were not detected in response to perifosine in 

medulloblastoma cell lines.   

The cell cycle involves sequential phases including G0, G1, S, G2, and M phases.  These 

phases of cell cycle are in turn regulated by two main checkpoints at G1-S and G2-M.  With 

regard to this aspect, perifosine inhibited cell growth via inducing cell-cycle arrest at G1-S 

transition in DAOY and at G2-M transition in VC-312.  The G1-S and G2-M check points are 

regulated by Cyclin D, Cyclin B and Cdks.  So we studied the effect of perifosine on cyclins and 

cyclin dependent kinases to determine the possible role of these cell-cycle regulatory proteins in 

the perifosine mediated effects.  Our results demonstrated that perifosine increased Cyclin D1 

levels in VC-312 cells without significant effect in DAOY cells.  We also determined whether 

perifosine affected cyclin dependent kinase phospho-Cdc2 (pCdc2) expression.  We found no 

change in pCdc2 in either of the cell lines with perifosine treatment.  Additional studies need to 

be done to further investigate the effect of perifosine on other cyclin dependent kinases.  

The studies reported here show that perifosine induces a robust increase in p21waf1/cip1 

expression in both medulloblastoma cell lines.  Increase in p21waf1/cip1 has been shown to induce 

growth cycle arrest and apoptosis in cancer cells 32, 53.  In this report we investigated the 

mechanisms of perifosine induced p21waf1/cip1 up-regulation in medulloblastoma cell lines, which 

were previously unknown.  p21waf1/cip1 is a 164 amino-acid protein which belongs to the Cip/Kip 

family and is encoded on human chromosome 6p21.2 82.  The N-terminus of p21waf1/cip1 contains 

a domain that binds to cyclin dependent kinases (cdks), some of the main regulatory proteins 
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involved in the cell cycle.  The C-terminal portion of p21waf1/cip1 has a nucleus-localizing 

sequence (NLS), which allows translocation to the nucleus 82.  P21waf1/cip1 exists predominantly 

in a quaternary complex with other regulators of cell cycle (p21/PCNA/cyclin/CDK) 149.  

P21waf1/cip1 affects the cdks by inhibiting the translocation of cdks into the nucleus and thereby 

regulating CDK-activating kinase (CAK) activity149.  The regulation of p21waf1/cip1 occurs mainly 

through transcriptional activation and post-transcriptional modification (mRNA stability).  The 

transcriptional activation of p21waf1/cip1 can occur through p53-dependent and p53-independent 

manners 98.  P53-independent transcription factors include sp1, sp3, smad3/4, p300, Ap2, 

STAT1/3/5 and P73 45.  Perifosine has been shown previously to induce p21waf1/cip1 by a p53-

independent mechanism in other cancer cells 28.  Akt directly phosphorylates p21waf1/cip1 at two 

sites (Thr145 and Ser146) in the carboxyl terminus 146.  Phosphorylation of Ser146 significantly 

increases p21waf1/cip1 protein stability 78.  Perifosine-mediated accumulation of p21waf1/cip1 has 

been shown to require activation of MAPK signaling, leading to an increase in the affinity and 

binding of transcription factor Sp1 to the p21waf1/cip1 promoter 28.  

As perifosine affects cell signaling pathways mediated by Akt and MAPK, we first 

determined whether these cell signaling pathways are involved in p21waf1/cip1 up-regulation.  

P21waf1/cip1 is post-transcriptionally regulated by Akt-mediated cell signaling.  Perifosine 

decreased the pAkt in both cell lines.  We infected the medulloblastoma cells with an adenoviral 

construct mediating expression of constitutively active Akt (CA-Akt).  CA-Akt contains a 

myristoylation sequence which has high affinity for the plasma membrane and has been shown to 

be not affected by perifosine 70.  Similar to earlier studies, perifosine treatment does not decrease 

pAkt in cells expressing CA-Akt and surprisingly increases the p21waf1/cip1.  It would be 

interesting to see the effect of CA-Akt on phospho-p21waf1/cip1 in these cells as p21waf1/cip1 is a 
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target of Akt.  At the level of transcription, p21waf1/cip1 is regulated by MAPK cell signaling and 

p53 28, 98.  First we determined the effect of perifosine on p53 protein level.  Our preliminary 

results suggest that perifosine treatment (15µM, 25µM) results in a decrease in p53 in VC-312 at 

24 hours and has minimal effect in DAOY (this particular study is currently ongoing and the 

experiment was done only once).  In addition, this study suggests that perifosine treatment does 

not increase p53 in either cell line.  Next we investigated the role of the MAPK signaling 

pathway in perifosine induced p21waf1/cip1 up-regulation.  Perifosine treatment has been shown to 

increase expression of proteins in the MAPK pathway 28, 64, 97.  Consistent with previous 

observations, there was a marked increase in pERK with perifosine treatment in VC-312 

medulloblastoma cells.  We sought to determine whether the induction of pErk in VC-312 cells 

was associated with perifosine p21waf1/cip1.  Perifosine mediated up-regulation of pErk was 

blunted with MEK inhibitor U0126.  Surprisingly, the expression of p21waf1/cip1 was increased in 

VC-312 cells with the combined treatment of perifosine and U0126 as compared to treatment 

with perifosine alone.  These findings suggest that perifosine mediated up-regulation of 

p21waf1/cip1 involves components other than pAkt and the MAPK pathway.  Further studies need 

to be done to investigate the role of other proteins.  
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             Medulloblastoma is one of the most common embryonic tumors in children.  Surgery, 

radiotherapy and chemotherapy are standard treatment modalities for medulloblastoma tumors.  

There had been recent advancements in chemotherapy but these chemotherapeutic drugs still 

have suboptimal effectiveness due to chemo-resistance.  A more complete understanding of the 

molecular mechanisms that underlie drug resistance in medulloblastoma will help in the 

development of better therapeutic strategies for these tumors.  These tumors are formed during 

brain development.  Normal development of brain involves proliferation, differentiation and 

migration of neurons and their supporting structures during prenatal and postnatal life 47.  These 

cellular processes are maintained by cell signaling pathways via interaction of cells with each 

other.  Disruption of normal signal transduction impairs normal development of the brain and 

can lead to hyper-proliferation and eventually tumor formation 114.  Mechanisms of disruption of 

these cell signaling pathways involve chromosomal loss and gene amplifications 22, 23, 100.  Akt 

kinases represent one of the main regulatory elements involved in cell signaling pathways and 

aberrant activation of this pathway is thought to be a common underlying factor in the 

pathogenesis of human malignancies including medulloblastoma 60.  Targeting Akt pathway with 

molecular targeted therapy has been shown to markedly reduce tumorigenicity in some cancer 

cells 19.  In this study, we determined the effect of inhibiting Akt mediated cell signaling on 

medulloblastoma cell survival and chemo-resistance. 

Akt is a 57 KD protein, present in three structurally homologous isotypes, Akt1 (PKBα), 

Akt2 (PKBβ) and Akt3 (PKBγ).  The N-terminus of all Akt isoforms contains the PH domain 

which has similar specificities for the D3-phosphorylated phosphoinositide on the cell membrane 

which is required for their activation 40.  The expression of these isoforms varies in different 

tissues.  Akt 1 and Akt 2 are universally expressed in all cell types whereas Akt3 is restricted to 
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the brain and testis 40.  Akt kinases are part of a survival pathway that has been found to be 

involved in chemo-resistance.  We first characterized the isoform expression of Akt proteins in 

medulloblastoma cell lines DAOY and VC-312.  All Akt isoforms (Akt1, Akt2, and Akt3) were 

detected in both cell lines (Figure 2.1A).  We also compared the mRNA levels of Akt isoforms in 

medulloblastoma tumor samples to those in normal brain.  The mRNA of Akt2 was significantly 

higher in medulloblastoma tumor samples as compared to normal cerebellum (Figure 2.1B).  The 

Akt2 gene has been frequently observed to be over-expressed and/or amplified in other tumors, 

including human pancreatic and ovarian carcinomas 17, 110.  The mechanisms underlying Akt 

isoform functional specificity derive partly from their sub-cellular distribution 50.  Despite 

differences in structure, the fundamental mechanisms of activation of all isotypes are the same.  

Each isotype has different specificity for different sub-cellular compartments which contributes 

to the specificity of Akt isotype functions.  Akt isotypes function by phosphorylation of its 

downstream substrates which is consistently associated with tumor formation, proliferation and 

chemo-resistance 18, 25.  In this study also, we also found increased expression of phosphorylated 

Akt in medulloblastoma clinical samples as compared to the normal brain.   

Factors that drive the activation of these Akt isotypes in medulloblastoma still remain to 

be elucidated; however there is evidence that supports decreased expression of PTEN, a negative 

regulator of Akt signaling in medulloblastoma.  Currently, one proposed mechanism for 

decreased PTEN expression is hypermethylation of its promoter 60.  We hypothesize that the Akt 

pathway would also be involved in medulloblastoma cell survival, proliferation and chemo-

resistance.  The Akt N-terminal PH domain is 60%-80% homologous among all Akt isotypes and 

explains the similarity in how they are activated.  The activated Akt then phosphorylates target 

proteins involved in tumor cell survival and proliferation 18.  Inhibition of this pathway has been 



www.manaraa.com

 

 116 

found to induce cell death in a variety of tumor cells 16, 110.  To determine the role of Akt kinase 

in medulloblastoma, pAkt (active Akt) levels were first determined using western blot analysis of 

medulloblastoma cell lines derived from primary tumors.  These cell lines demonstrate 

expression of both pAkt and the inactive Akt (Figure 2.1A).  We then determined the effect of 

inhibition of Akt mediated cell signaling in medulloblastoma cells, downregulating Akt by 

pharmacological and genetic methods.  We chose the pharmacological route using a novel 

phospholipid analogue, perifosine that has been shown to inhibit Akt by inserting itself into the 

cell membrane and inhibiting PH domain-mediated activation.  This drug is currently undergoing 

phase I and phase II clinical evaluation in advanced solid tumors including colon and ovarian 

carcinomas 24, 74.  The effect of perifosine was determined on DAOY and VC-312 

medulloblastoma cells by exposing them to a single treatment of the drug for 24 hrs.  Perifosine 

treatment was found to decrease the cell viability in both medulloblastoma cell lines in a dose-

dependent manner (Figure 2.3).  A steep decline in cell viability was noted at doses ranging from 

15uM to 35uM in both cell lines, and the LD50 was established at approximately 25uM (Figure 

2.3).  This LD50 dose of perifosine at 24 hrs is higher than the maximum achievable plasma 

concentration of perifosine in tumor patients (19uM) 24.  It is important to note that while in 

published in vivo studies 19uM doses of perifosine was maintained for extended durations 

(weeks) whereas our  LD50  dose was calculated by exposing these cells for 24 hrs.  In 

subsequent experiments, we calculated the LD50 dose of perifosine at extended time points- 72hrs 

and 120hrs.  The LD50 of perifosine calculated at 72 hrs and 120 hrs and was found to be 

approximately 15uM and 10uM respectively (Appendix A), which is less than the maximum 

achievable plasma concentration in patients.  These findings suggest that either perifosine has a 

long half life in medulloblastoma cells and may act for an extended period or that it initiates a 
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fatal, self-renewing cascade that eventually leads to a decrease in cell viability.  Perifosine 

treatment resulted in a significant decrease in pAkt along with a decrease in cell viability (Figure 

2.2, 2.3) and had no effect on total Akt.  In subsequent experiments we also determined the time- 

dependent effects of perifosine on medulloblastoma cells and  noted a complete loss of 

detectable phospho-AKT in both cell lines at this concentration by 6 hours following treatment 

(Figure 2.4A).  

 The decrease in pAkt was found to precede the decrease in cell viability, indicating a 

temporal relationship between the events.  These experiments suggest that Akt signaling could be 

involved in medulloblastoma cell survival.  Studies have been conducted in different cancer 

types including prostate cancer cells to assess if perifosine-induced cytotoxicity involved Akt 

mediated cell signaling.  Constitutive activation of Akt (CA-Akt) protects prostate cancer cells 

from perifosine-induced cell death 69.  CA-Akt possesses a myristoylated sequence at the N-

terminus that has a higher affinity for the cell membrane and as a result of this the translocation 

of CA-Akt from cytosol to cell membrane is not inhibited by perifosine.  Preliminary 

experiments were conducted in which VC-312 cells were transfected with CA-Akt and it was 

found that this can override perifosine-mediated decrease in pAkt in medulloblastoma cells 

(Figure 3.3).   

A caveat of targeting Akt using perifosine include potential off target effects on other cell 

signaling pathways, such as the MAPK pathway, which may also be initiated by components of 

the cell membrane.  The MAPK pathway is also known to regulate cell proliferation and survival 

and, is found to be active in medulloblastoma 144.  We sought to determine if perifosine also had 

an effect on these pathways.  Interestingly, we found that the impact of perifosine on MAPK 

signaling differs in the cell lines- DAOY and VC-312.  One of the main proteins involved in 
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MAPK signaling is Erk and activation of MAPK signaling was confirmed by detecting pErk with 

immunoblot.  Perifosine treatment increased pErk in VC-312 cells at doses of 15uM and 25uM, 

while it had no effect on the DAOY cells (Figure 3.4).  These results indicate that MAPK 

signaling is induced in VC-312 medulloblastoma cells in response to perifosine and could be 

explained by a decrease in pAkt due to perifosine since the two pathways negatively modulate 

each other 61, 109.  Despite differential effects on MAPK signaling in DAOY and VC-312 cell 

lines, the LD50 dose of perifosine for cell viability in both cell lines is the same.  This suggests 

that MAPK signaling is unlikely to be a major component in mediating the effect of perifosine 

on cell viability in medulloblastoma cells.   

After establishing that perifosine decreases cell viability in medulloblastoma cells, we 

explored the mechanism of cell death in response to perifosine.  In general, tumor survival and 

proliferation depends upon deregulation of cellular events such as cell cycle progression and 

apoptosis 62, 83.  Akt pathway directly impinges upon these cellular events, and we sought to 

determine the effects of perifosine on apoptosis and the cell cycle 33, 79.  Apoptosis is best 

described as programmed cell death.  It involves a complex set of events within a cell leading to 

activation of proteolytic enzymes known as caspases which then act in concert to cause 

morphological changes in the cell, ultimately leading to cell death 33.  We examined the effect of 

perifosine on different caspases in medulloblastoma cells.  Treatment with perifosine at the LD50 

dose (25uM) was found to trigger cleavage of caspases resulting in induction of apoptosis.  In 

both cell lines, caspase-3 and caspase-9 cleavage was detected after 6 hrs (Figure 2.4A, 2.4C).  

Notably, these were also the time points associated with a decrease in cell viability.  The 

activation of these caspases either requires loss of mitochondrial integrity leading to release of 

cytochrome C (intrinsic apoptotic pathway) or activation of Fas/CD95 death receptor on the cell 
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membrane (extrinsic apoptotic pathway).  Perifosine induces release of cytochrome C from 

mitochondria and also recruits Fas/CD95 death receptor to the cell membrane in multiple 

myeloma cancer cells 44.  These active caspases directly cleave a target protein, PARP.  In this 

work PARP cleavage was detected upon exposure to perifosine in both medulloblastoma cell 

lines examined (Figure 2.4B).  Results from these studies indicate that the response to perifosine 

includes a dramatic increase in caspase activity in medulloblastoma cells.  

Having establishing the role of perifosine in the intrinsic pathway, we set out to 

determine if it would affect the extrinsic pathway as well.  In acute myelogenous leukemia cells, 

perifosine activates the extrinsic pathway of apoptosis by increasing the expression of death 

receptors DR4/DR5 on the cell surface 130, which then activates caspase 8, ultimately leading to 

apoptosis 20.  We did not observe any caspase-8 cleavage in medulloblastoma cells following 

treatment with perifosine.  Interestingly, 62% of medulloblastoma tumors have inactivation of 

the caspase-8 gene by aberrant methylation of its promoter 51.  This might account for our 

finding of no increase in caspase-8 following exposure to perifosine as these cells may be 

inherently incapable of synthesizing this protein. 

 The aforementioned results suggest that perifosine mediates cell death in 

medulloblastoma by activating the intrinsic pathway of apoptosis.  However, perifosine might 

cause cell death independent of caspase-mediated apoptosis.  Perifosine has been shown to 

induce caspases independent of cell death by increasing JNK and c-jun phosphorylation in acute 

lymphoblastic cells 20.  Thus, it will be important in future studies to explore other mechanisms 

of cell death in response to perifosine treated medulloblastoma cells.    

Tumor cell growth can be affected not only by cytotoxic mechanisms but also by 

cytostatic mechanisms.  With this in mind, we investigated if perifosine would have a cytostatic 
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effect on medulloblastoma cells.  Cells were stained with propidium iodide and examined using 

flow cytometry for cell cycle changes.  Quantitative analysis of flow cytometric results showed 

that treatment with perifosine led to cell cycle arrest in both cell lines.  Interestingly, perifosine 

induced cell cycle arrest at the G1/S phase in DAOY and at the G2/M phase in VC-312 cells 

(Figure 2.6).  Thus, perifosine acts to halt cells in different phases of the cell cycle in the two 

medulloblastoma cell lines studied.  We therefore explored the mechanism of cell cycle arrest in 

these cells in order to better understand these differences. 

In normal cells, cell cycle is tightly regulated by cyclin dependent kinases (cdks).  

Activity of these cdks is controlled by cyclins (positive regulators) and cdk inhibitors (negative 

regulators) 132.  While activation of the cdks helps the cell to move from one phase of the cycle to 

another, over-activation leads to an uncontrolled cellular proliferation which might be a key 

factor in tumorigenesis49.  Furthermore, loss of cdk inhibitors has been found in various 

malignancies, and this also can lead to uncontrolled cell cycle progression and cancer growth 120.  

We determined the effect of perifosine on cyclins and cdk inhibitors in medulloblastoma cells.  

Perifosine has been shown to induce p21waf1/cip1 (one of the cdk inhibitors) in squamous 

carcinoma cells 104.  Similarly, perifosine induced p21waf1/cip1 (at the doses of 15uM and 25uM) in 

medulloblastoma cell lines (Figure 2.7).  Importantly, silencing of p21waf1/cip1 with siRNA in VC-

312 cells overcame the cell cycle arrest induced by perifosine (Figure 2.8B).  This indicates a 

potential role for p21waf1/cip1 in perifosine induced cell cycle arrest in medulloblastoma cells.  Up-

regulation of p21waf1/cip1 can also influence the cell’s abilities to undergo differentiation and 

apoptosis, in addition to promoting cell cycle arrest 32, 53.  Thus p21waf1/cip1 up-regulation in 

response to perifosine might be responsible for cytotoxic and cytostatic effects in 

medulloblastoma.  The endogenous expression of p21waf1/cip1 in medulloblastomas is low, as its 
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negative regulator, FOXG1 is amplified in a majority of these tumors 2.  After determining the 

effect of perifosine on cdk inhibitors, we attempted to examine the effect of perifosine on 

cyclins, another group of cell cycle regulators.  We had already established that perifosine 

treatment induces cell cycle arrest at the G1/S phase of the cell cycle in DAOY and the G2/M 

phase of cell cycle in VC-312.  Consequently, we first turned our attention to the effect of 

perifosine on the cyclins involved in these two phases of the cell cycle.  Cyclins interact with cdk 

and drive the progression of a cell through different phases of the cell cycle.  The main cyclins 

involved in the above-mentioned cell-cycle phases are cyclin D (G1/S) and cyclin B (G2/M) 132.  

The expression of these cyclin proteins increases in response to mitogenic stimuli 71, and their 

binding to Cdks leads to their activation.  Activated cdks then phosphorylate target proteins and 

increase the expression of genes required for cell cycle progression 83.  We could not detect 

cyclin B with western blot analysis in either cell line.  Perifosine treatment induced cyclin D1 in 

VC-312 without any effect in DAOY cells (Figure 3.1).  As previously mentioned, perifosine 

treatment also led to an increase in the expression of pERK in VC-312 cells without any effect in 

DAOY cells.  It would be interesting to see if there is any association between perifosine induced 

pErk and cyclinD1 in VC-312 cells.  CyclinD1 expression has been found to be induced in 

response to activation of MAPK signaling (increase in pERK) 68.  Another notable finding was 

that there was increase in expression of p21waf1/cip1 (negative regulator of cell cycle) and 

cyclinD1 (positive regulator of cell cycle) with perifosine treatment in VC-312 cells.  These two 

proteins compete with each other to influence the levels of cdks.  p21waf1/cip1 is a universal cdk 

inhibitor and can affect any cdk whereas cyclin D1 selectively affects cdks involved in the G1/S 

phase of cell cycle.  Thus, induction of cyclin D1 protein in response to perifosine in VC-312 

might increase the cdk activity involved in G1/S phase of cell cycle, which might rescue VC-312 
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cells from arresting in G1/S phase of cell cycle as compared to DAOY medulloblastoma cells.  

Perifosine induced p21waf1/cip1 would then inhibit the cdks involved in the next phase of the cell 

cycle (G2/M), leading to cell cycle arrest in G2/M in VC-312 cells. 

Next we investigated the mechanism of perifosine-mediated p21waf1/cip1 up-regulation in 

these medulloblastoma cells.  In prostate cancer cells, perifosine is known to induce p21waf1/cip1 

by down-regulating p-Akt, while expression of CA-Akt abrogates perifosine-mediated decrease 

in p-Akt and up-regulation of p21waf1/cip1 69.  In contrast to these findings, our studies showed that 

CA-Akt expression did not have any effect on perifosine induced p21waf1/cip1 expression (Figure 

3.3).  p21waf1/cip1 is transcriptionally regulated by p53 and MAPK signaling pathway components.  

We investigated the role of the MAPK signaling pathway in perifosine induced p21waf1/cip1 up-

regulation.  Induction of MAPK signaling increases the activity of transcription factors like Sp1, 

leading to increased expression of p21waf1/cip1 64, 97.  Perifosine treatment led to an increase in 

pErk levels (MAPK) in VC-312 cells (Figure 3.4).  To determine the role of MAPK signaling in 

perifosine induced p21waf1/cip1, we blunted the up-regulation of pErk using the MEK inhibitor 

U0126 and then assessed the effect of perifosine on p21waf1/cip1 protein level.  Blunting of pErk 

did not attenuate perifosine mediated p21waf1/cip1 expression (Figure 3.5).  Surprisingly, the 

expression of p21waf1/cip1 was increased in VC-312 medulloblastoma cells treated with perifosine 

and MEK inhibitor as compared to treatment with perifosine alone.  This paradoxical finding 

suggests that perifosine mediated up-regulation of p21waf1/cip1 does not appear to involve up-

regulation of pErk in VC-312 medulloblastoma cells.  Further studies are warranted to 

definitively exclude the role of MAPK pathway in perifosine induced p21waf1/cip1 by transfecting 

these cells with dominant negative MEK (DN-MEK) or siRNA directed against MEK.  



www.manaraa.com

 

 123 

P53 is transcription factor for p21waf1/cip1.  To investigate whether p21waf1/cip1 up-

regulation is related to p53, we determined the effect of perifosine on p53 protein expression and 

found no increase in p53 protein expression with exposure to perifosine (15uM, 25uM) in either 

cell line (Figure 3.6A, 3.6B).  In this study we only determined the effect of perifosine on p53 

protein level and did not examine the effect of perifosine on p53 transcriptional activity.  The 

effect of perifosine on p53 functional activity would nevertheless be an interesting future study. 

As mentioned above, perifosine acts on medulloblastoma cells by inducing apoptosis and 

cell cycle arrest.  Similar effects have been reported in human gastric cancer cells in response to 

chemotherapy 80.  The signaling mechanisms associated with cell cycle arrest and apoptosis are 

interconnected and thus influence each other.  Cell cycle arrest can induce apoptosis by 

decreasing the level of anti-apoptotic proteins as during cell cycle arrest, there is dissociation of 

transcription from translation because of loss of the nuclear membrane 11.  This would result in a 

decrease of proteins and mRNAs with short half-lives such as Mdm-2, XIAP, cIAP-2 and FLIP 

all of which have anti-apoptotic functions.  The relative deficiency of these anti-apoptotic 

proteins triggers apoptosis.  It would be interesting to determine the effect of perifosine on these 

proteins in DAOY and VC-312 medulloblastoma cell lines. 

 In this study, we only report the effect of perifosine on apoptosis and cell cycle.  Another 

mechanism which might contribute to perifosine-mediated cell death in these cells is autophagy.  

In this process the cell degrades its own components through the lysosomal machinery.  This 

usually occurs in terminally differentiated cells such as cardiomyocytes and neurons 137.  

Regulation of autophagy involves autophagosome formation and is negatively regulated by 

PI3K/Akt signaling through the mammalian target of rapamycin (mTOR).  Perifosine-mediated 

inhibition of Akt signaling might increase autophagosome formation leading to autophagy in 
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these cells.  It would be interesting to determine if perifosine-induced cell death involves 

autophagy in these cells.  

Perifosine targets cell membranes and interferes with signal transduction pathways.  Due 

to this distinct mode of action, this drug is an attractive candidate to combine with chemotherapy 

and radiotherapy to overcome therapeutic resistance 139.  We tested the effect of perifosine on 

etoposide- and radiation-induced cell death in these cell lines.  Perifosine enhanced etoposide 

and radiation-induced cell death.  This effect was additive for VC-312 and synergistic for 

DAOY, and resulted in a marked increase in cell death (Figure 2.5A, 2.5B).  The apparent 

synergy seen in the current study was observed at clinically achievable concentrations of 

perifosine (10uM).  

Our studies have thus far mainly focused on in vitro techniques to elucidate the effects of 

perifosine on medulloblastoma cell lines, its effects in the in vivo setting remains to be 

determined.  Perifosine is a highly lipophilic agent and has been demonstrated to cross the 

normal blood-brain barrier (BBB) in rodents 24, 138.  Also, brain tumors have an imperfectly 

formed or “leaky” BBB, which would allow greater access to the tumor bed.  Hence, use of 

perifosine for in vivo tumor models might very well be feasible and forms an important aspect of 

our future studies.  In summary, perifosine appears to be a promising adjuvant treatment, 

deserving of further evaluation in pediatric brain tumors such as medulloblastoma. 

Conclusion:  

In summary, medulloblastoma (MB) is the most common malignant cancer of the central 

nervous system in children.  Akt kinases are critical for tumor cell survival and proliferation and 

have been found to be significantly elevated in medulloblastoma cells.  Perifosine, an inhibitor of 

Akt kinase, induces a rapid decrease in cell viability with pronounced suppression of 
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phosphorylated Akt.  Perifosine acts on medulloblastoma cells by inducing apoptosis and cell 

cycle arrest, similar to other chemotherapeutic drugs in cancer cells 80.  Apoptosis and cell cycle 

arrest are mediated by activation of caspases and p21cip1/waf1 proteins respectively.  Specifically, 

apoptosis was affected by the intrinsic pathway, while cell cycle arrest was found to be mediated 

by up-regulation of the cdk inhibitor- p21waf1/cip1.  Up-regulation of p21waf1/cip1 has been shown to 

increase cancer cell’s ability to undergo differentiation, apoptosis and cell cycle arrest.  

p21waf1/cip1 expression can be regulated by p53, Akt and MAPK pathways.  Perifosine has been 

shown to up-regulate p21waf1/cip1 by a p53 independent mechanism, via up-regulation of the 

MAPK pathway in other cancer cells.  In the present study, we did not find any increase in p53 

protein levels in response to perifosine.  In contrast to earlier studies, MAPK inhibition resulted 

in a paradoxical increase in p21waf1/cip1 expression.  Thus, perifosine induced increase in  

p21waf1/cip1 does not appear to be mediated by p53 or MAPK signaling in the medulloblastoma 

cell lines examined herein, suggesting the involvement of an alternative pathway or pathways.  

These studies confirm that perifosine inhibits Akt pathway in medulloblastoma cells and 

targets key regulatory proteins involved in apoptosis and the cell cycle.  In other studies, 

activation Akt pathway has shown to bestow therapeutic resistance in cancer cells 86, as a result 

perifosine can have significant potential as a new effective therapy in medulloblastoma.  

Perifosine, when used in combination with existing modalities of treatment for medulloblastoma 

(i.e. sub-lethal doses of etoposide or irradiation), significantly enhances the efficacy of the latter.  

These findings indicate that perifosine, either alone or in combination with other treatment 

methods, might be an effective therapeutic agent for the treatment of medulloblastoma.   
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We determined the effect of another Akt inhibitor on medulloblastoma cells.  Akti IV is 

another potent Akt inhibitor, which decreases cell viability.  Perifosine and Akti IV have 

different mechanisms of action to suppress Akt.  The combined effect of these two Akt inhibitors 

was more than additive on reducing cell viability in medulloblastoma cells at lower doses in 

preliminary studies (Appendix D).  The combination of these two possibly enhances the 

inactivation of Akt (although not examined in study) leading to decrease in cell viability.  We 

also determined the effect of perifosine on another pediatric brain tumor, ependymoma.  

Surprisingly, in this study, ependymoma cells were not as sensitive as medulloblastoma cells 

(Appendix C).  In addition, perifosine treatment did not decrease pAkt expression in 

ependymoma cells at concentrations up to 100 µM.  These results suggest that the perifosine 

effect on pediatric brain tumors may be tumor cell type specific.  

  

Future Directions  

Akt has been recognized as a key component in tumor cell proliferation.  Akt has three isoforms 

and each isoform has specific functions: Akt1 is involved in cell growth, Akt2 in maintaining 

glucose homeostasis and Akt 3 in cell growth mainly restricted to the brain 16, 59.  Targeting Akt 

using perifosine would nonspecifically inhibit all isoforms as they all have the same mechanism 

of activation.  Future studies will determine the effect of knock down of each of these isoforms 

using specific synthetic small-interfering RNAs or monoclonal antibody in different tumors.  

Preliminary studies have shown that knocking down each isoform of Akt affects the growth of 

cancer cells 59, indicating the potential role of specific Akt isoforms in cancer cell survival.  

Perifosine has been used in vivo in animal models of some other cancer cells15.  Future studies 

are needed to see if perifosine’s in vitro effects in medulloblastoma cells can be reproduced in in 
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vivo tumor models.  Our lab has recently generated tumors in nude mouse brains using VC-312 

cells.  Perifosine can be used in these nude mice with a loading dose of 300 mg/kg and 

maintenance dose of 35 mg/kg by oral route, similar to a study done in glioma cells27.  This study 

will potentially argue for the use of perifosine in medulloblastoma patients. 

  Mechanism of perifosine induced increase in p21waf1/cip1 is still unknown in 

medulloblastoma cells.  FOXG1 protein is a negative regulator of p21waf1/cip1 which maps to 

chromosome 14q.  Sixty seven percent of medulloblastoma tumors are found to have gain of 

chromosome 14q 2.  Quantitative real time PCR showed a 2-7-fold copy gain for FOXG1 in 

medulloblastoma tumor cells.  Decrease in expression of FOXG1 in DAOY cell line using 

siRNA up-regulates p21waf1/cip1 2.  It would be interesting to see the effect of perifosine on 

FOXG1 protein in medulloblastoma cells and if FOXG1 mediates perifosine induced p21waf1/cip1 

upregulation.  
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APPENDIX A 
 

Effect of perifosine on medulloblastoma cells at extended time points 

Rationale 

Perifosine is very effective in reducing the cell viability in medulloblastoma cells.  The 

LD50 dose of perifosine in medulloblastoma cell lines was determined to be 25µM at 24 hrs.  

This LD50 dose of perifosine is higher than the maximum achievable plasma concentration of 

perifosine in tumor patients (19uM) 24.  However, it is important to note that the maximum 

achievable plasma concentration of perifosine can be maintained clinically for weeks, while our 

LD50 was calculated by exposing these cells for only 24 hrs.  We therefore set out to determine 

the LD50 of perifosine at more extended time points- 72hrs and 120hrs. 

Methods 

The medulloblastoma cell line VC-312 were plated in white, opaque-walled, sterile, 96-

well plates at the density of 1000 cells per 100 µL of growth medium per well.  Cells were 

treated with perifosine (10µM and 20µM) versus vehicle control (PBS) for 24, 72, 120 hours.  

Cell viability was determined using the Cell Titer-Glo luminescent ATP assay (Promega Inc., 

Madison, WI).  The cell viability was calculated with the following equation: % Survival = 

(x/y)*100 where ‘x’ is the number of viable cells in conditions exposed to perifosine, ‘y’ is 

number of cells treated with vehicle control. 

Results and discussion 

 We found a significant decrease in cell viability of VC-312 cells treated with 10µM and 

20µM perifosine at 72hrs and 120 hrs compared to 24 hrs (P< 0.05) (Figure A).  The LD50 of 
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perifosine calculated at 72 hrs and 120hrs was found to be approximately 15uM and 10uM, 

which is less than the maximum achievable plasma concentration in patients.  These findings 

suggest that perifosine can have cumulative effects on growing cells over extended time periods.  
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APPENDIX B 
 
 

The effect of caspase inhibitors on perifosine-induced decrease in cell viability 

Rationale   

Perifosine decreases medulloblastoma cell viability by inducing caspase cleavage in these 

cells.  To further determine the potential role of caspase activation in perifosine mediated cell 

death, this study was performed using a selective small molecule inhibitor of caspase 3 (obtained 

from EMD Biosciences).   

Methods 

Cell viability was determined using the Cell Titer-Glo luminescent ATP assay (Promega 

Inc., Madison, WI).  VC-312 cells were plated in white, opaque-walled, sterile, 96-well plates 

at the density of 1000 cells per 100 µL of growth medium containing 10% FBS at 37 °C 

overnight.  After 24 hours, cells were first treated with caspase3 inhibitor (from 

Calbiochem/EMD bioscience) (10, 25, 50 µM) for one hour and then with increasing 

concentrations of perifosine (10µM to 50µM) for 24 hours.  The cell viability was calculated 

with the following equation: % Survival = (x/y)*100 where ‘x’ is the number of viable cells in 

conditions exposed to perifosine, caspase 3 inhibitor or both, ‘y’ is number of cells treated with 

vehicle control  

Results and discussion 

We observed that the caspase3 inhibitor did not affect the cell viability at lower doses of 

perifosine (10, 20 µm).  Higher doses of caspase3 inhibitor partially attenuated the effect of 

higher dose of perifosine.  Maximum attenuation was seen with 50 µM caspase inhibitor and 62 

µM perifosine (Figure E) (P< 0.05).  On x axis labeled P is perifosine and C is caspase 3 

inhibitor. 
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APPENDIX C 

 

Differential response of pediatric brain tumor cells to perifosine  

Rationale 

Perifosine is very effective in reducing the cell viability of medulloblastoma cells.  We 

examined the effect of perifosine on another common pediatric brain tumor, ependymoma.  This 

study compared the effects of perifosine on cell viability and cell signaling pathways in 

medulloblastoma cell lines and ependymoma cell line.    

Methods 

The human ependymoma-derived cell line R196 was obtained from American Type 

Culture Collection (ATCC).  These cells were plated in white, opaque-walled, sterile, 96-well 

plates at the density of 1000 cells per 100 µL of growth medium per well.  Following 24 hour 

incubation, cells were treated with perifosine (1µM to 100µM) versus vehicle control (PBS) for 

24 hours.  Cell viability was determined using the Cell Titer-Glo luminescent ATP assay 

(Promega Inc., Madison, WI).  

 Western Blot 

Cell lysates were prepared from cells treated with perifosine (1um to 100uM).  The 

proteins were resolved on Novex NuPAGE 4-12% Bis-Tris gels (Invitrogen) and transferred to 

nitrocellulose membranes at 35 V for 2 hours (Invitrogen).  The membranes were incubated with 

pErk and pAkt antibodies.  Western Blots were developed using the ECL Detection System (GE 
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Healthcare-Amersham Biosciences, Piscataway, NJ, USA).  β-Actin antibody (1:5,000, Sigma 

Biotechnology) was used as a control for protein loading.   

Results and discussion 

We examined the effect of perifosine treatment on the viability of medulloblastoma (VC-

312, DAOY) and ependymoma (R196) cells.  Perifosine induced a dose dependent decrease in 

cell viability in medulloblastoma cell lines, shown in figure C1.  The LD50 (lethal dose to 50%) 

for DAOY and VC-312, determined using 3 replicate viability assays, was 25 µM (Figure C1).  

Surprisingly, ependymoma cell viability did not decline in response to perifosine at lower doses.  

There is a steep decline in cell viability at doses of perifosine higher then 50 µM in ependymoma 

cells.  We also compared the effect of perifosine on pAkt and pErk in medulloblastoma (VC-

312) cells and ependymoma (R196) cells.  Western blot analysis showed a decrease in pAkt 

(mean 0.12 fold) and an increase in pErk (mean 4.2 Fold) with perifosine treatment (100uM) in 

VC-312 cells (figure C2).  In ependymoma cells (R196) perifosine treatment led to a decrease in 

pErk (mean 0.22 fold) and had minimal effect on pAkt levels (figure C2).  
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APPENDIX D 

 

 Combination treatment of perifosine with Akti IV has an additive effect on cell viability in 

medulloblastoma cells. 

Rationale 

We showed that perifosine potently inhibits Akt kinase and leads to a decrease in cell 

viability in medulloblastoma.  Similar to perifosine, Akti IV is another potent Akt inhibitor, 

which decreases the cell viability in these cells.  The mechanism of action of Akti IV is different 

than perifosine as it inhibits PDK1 kinase (Calbiochem/EMD Bioscience).  In this study, we 

determined the combined effect of perifosine and Akti IV on cell viability in medulloblastoma 

cells.  

Methods 

Cells were plated in white, opaque-walled, sterile, 96-well plates at the density of 1000 

cells per 100 µL of growth medium per well.  After 24 hours, these cells were treated with 

increasing doses of perifosine (10µM to 30µM) versus vehicle control (PBS) for 24 hours.  After 

24 hours of treatment with perifosine, these cells were then treated with Akti IV (Calbiochem) 

(0.1uM and 0.3uM) for another 24 hours.  Cell viability was determined using the Cell Titer-Glo 

luminescent ATP assay (Promega Inc., Madison, WI).  The cell viability was calculated with the 

following equation: % Survival = (x/y)*100 where ‘x’ is the number of viable cells in conditions 

exposed to perifosine, ‘y’ is number of cells treated with vehicle control  

Results and discussion 
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Treatment with combination of perifosine (10uM) and AktiIV (0.1uM) has more than 

additive effect on cell viability in DAOY cells.  There was a 10% decrease in cell viability at 

10uM perifosine and a 5% decrease in cell viability at 0.1uM AktiIV.  The combined treatment 

of AktiIV (0.1uM) and perifosine (10uM) resulted in 35% decrease in cell viability (P< 0.05).  

N=1: The experiment was done with five replicates for each condition.  On x axis labeled A is 

AKTi IV and P is perifosine 
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